Grammar in ‘agrammatical’ aphasia: What’s intact?
Han Zhanga, Wolfram Hinzena,b
a Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
b Catalan Institute for Advanced Studies and Research (ICREA), Barcelona, Spain
*Corresponding author: han.zhang@upf.edu

Are “language mechanisms fundamentally preserved in aphasia” (Hula & McNeil, 2008)?

- Yes, if the appearance that they are not is caused by cognitive mechanisms preventing “access”.
- Previous evidence in favor:
 - Residual language function in aphasia relying on parts of the pre-existing brain-language network (Stefaniak et al., 2021; Griffis et al., 2017; Kiran et al., 2015).
- What about evidence from spontaneous speech?
 - Typical variables in previous quantitative analyses of spontaneous speech are unsuitable to address this issue (Prins & Bastiaanse, 2004; Bryant et al., 2016).
- Here we operationalized the notion of “intact” grammatical knowledge as the preservation of the syntactic hierarchy.

Aim and hypotheses

- **Aim:** To operationalize what it means for grammar to be “intact” and test this in those speakers with agnostic Broca’s aphasia that produce minimal sentences.
- **General hypothesis:**
 - The characteristic pattern of dysfluent “agrammatic” speech yields a distorted image of the grammatical complexity involved.
- **Specific hypotheses:**
 - Intactness of thematic structure, i.e. the syntactic nucleus of the proposition.
 - Intactness of the syntactic skeleton:
 - Presence and neurotypical distributions of Aspect-Tense-Modality (TAM) and discourse markers, after correcting for speech quantity.
 - *Clausal embedding* after allowing for compensatory strategies (specifically, quotational embedding) (Groenewold et al., 2013; Ulatowska et al., 2011).
 - Neurotypical *adjunct placement* at all heights of the syntactic hierarchy.
 - Error and pausing patterns reflecting mainly *omissions and compensations, and planning for grammar*.

Methods

- **Data collection**
 - AphasiaBank database (MacWhinney et al. 2011)
- **Participants**
 - 20 persons with Broca’s aphasia
 - 20 healthy controls
- **Speech samples**
 - Free speech and Picture descriptions
- **Annotation** (Unit of analysis: an utterance)
 1. ATM
 - Aspect-Tense-Modality
 2. Clause embedding
 - (i) Quotational embedding; (ii) Non-quotational embedding
 3. Interactional language
 - (i) Response markers; (ii) Conformational
 4. Adjunct
 - (i) V-attached adjunct; (ii) Vp-attached adjunct; (iii) Propositional-level adjunct
 5. Pauses
 - (i) Between g-unit pauses; (ii) Between-phrase pauses; (iii) Within-phrase pauses
 6. Error patterns
 - (i) Omissions (ii) Morphological errors (iii) Word order violations
- **Statistical analysis**
 - Stage 1: Group comparisons: Mixed effects negative binomial regression
 - Stage 2: Within-group comparisons: Friedman tests
 - Stage 3: Error analysis: descriptive statistics

Results

- **Between-group comparisons**
 - Fig 1. Estimated rates of the 13 linguistic variables for the two groups.
 - BA > HC : Quotational embedding, Response marker, and Between g-units pauses
 - HC > BA : Tense, Non-quotational embedding, and Adjunct of all types

- **Within-group comparisons**
 - Fig 2. Mean ratios of subtype variables from different domains in both groups.

- **Error analysis**
 - Fig 3. Distribution of error subtypes.
 - Omission of free morphemes
 - Omission of bound morphemes
 - Morphological error
 - Word order

Conclusion

- The overall pattern of results supports the *intactness of the syntactic hierarchy*.
- This question BA as a *model of the loss grammatical competence* in the brain.