Using Machine Learning to Detect and Predict Word Level Errors in Narratives of People with Aphasia

Rosa Zavaleta, M.S., CF-SLP Jacob Brue, M.S., CS Laura Wilson, Ph.D., CCC-SLP, CBIST Sandip Sen, Ph.D.

DISCLOSURES

- Financial Relationships
- Jacob Brue receives a full scholarship and stipend from Tulsa CyberFellows for PhD research at the University of Tulsa
- Rosa Zavaleta is employed at Kindred Hospital; former student at The University of Tulsa
- Laura Wilson and Sandip Sen are full-time, salaried employees at The University of Tulsa
 - Nonfinancial Relationships
- -We used the AphasiaBank as the source of the data
- AphasiaBank is supported by NIH-NIDCD grant R01-DC008524 for 2022-2027

CONTENTS

- 1. Introduction
- 2. Errors in Aphasia
- 3. Paraphasias and Past Studies
- 4. Research Question
- 5. Big Picture Model
- 6. Specific Modules and Results
- 7. Future Directions
- 8. Questions and Comments
- 9. References

INTRODUCTION

aphasia

research

APHASIA

PARAPHASIAS: Substitutions of an intended word with a sound or unintended word (Dalton et al., 2018).

PARAPHASIAS TYPES

EXAMPLE: I HAVE A CAT.

SEMANTIC: substitutions are related to intended meanings

I have a dog.

PHONEMIC: substitutions are related to intended sounds

I have a hat.

NEOLOGISTIC: substitutions are non-words

I have a sark.

WHY PARAPHASIAS?

2018	Le and colleagues
	Created a model to automatically detect paraphasias in the narratives of PWA.
2003	Bird and colleagues
	Explored impact of imageability and part of speech in speech of PWA.
1995	Nickels and colleagues
	Confirmed relationship with psycholinguistic factors. Namely imageability and age of acquisition.
1984	Butterworth and colleagues
	Found relationship between paraphasia production and external factors like frequency.

RESEARCH QUESTION

UTTERANCES

Aphasiabank Transcription: Cindessa uh was a poor boy.

Target sentence: Cinderella was a poor girl.

features from aphasiabank	
error tag	error
intended word	girl
part of speech	noun
location	5

features from psycholinguistic database		
imageability	100	
frequency	6.53	
age of acquisition	320	
length of word (grapheme number)	4	

DECISION TREES

Target sentence: Cinderella was a poor girl.

10

HISTORY OF MODELS FOR CURRENT PROJECT

02 WORD LEVEL DETECTION MODEL

- Included previously excluded neologistic and semantic errors with and without replacements
- Used a manual imputation strategy for words without replacement
- Included clinical features

Receiver Operating Characteristic (ROC) Curve

Test-train split (cross-validation)

- Found salient features supporting the detection of word level errors with high accuracy
 - Part of speech
 - Word frequency
 - Participant age
 - Word imageability
 - Aphasia duration
 - Severity status

03 SENTENCE LEVEL DETECTION MODEL

- <u>Main difference</u>: Include context through the use of features of surrounding words.
- E.g. I haves a cat.
 - The model would incorporate features of the intended word (have) as well as of the surrounding words within a small window.
 - The model will additionally use aggregate information from the whole utterance.
- We will continue to focus on interpretable models while expanding the input of the model.
- We anticipate that providing more context will create a more accurate detection model than our previous word level model.

Future Directions

DISCUSSIONS AND CONCLUSION

• <u>Interdisciplinary work</u>: Innovative, interdisciplinary work between computer science and speech language pathology

- <u>Salient features</u>: Paraphasic errors in PWA are related to personal, word, and clinical level features
 - Salient features from this project include part of speech, frequency, imageability, participant's age, aphasia duration, and severity of aphasia

<u>Clinical implications</u>

- Diagnosis: integrated model that can filter and identify various communication patterns
- Treatment: selection of target words, treatment approaches, predictive output within AAC, etc.
- Prognosis: using accurate medical data, models increase predictive clinical outcomes

ADDITIONAL TAKEAWAYS

The combination of machine learning applications and speech pathology can facilitate:

Challenging and unique research questions within each field

Fine tuning AI language models for speech and communication applications

New interactive and accessible technologies for improved care of people with aphasia

Questions/Comments?

Rosa.zv04@gmail.com jacob-brue@utulsa.edu

References

Bird, H., Howard, D., & Franklin, S. (2003). Verbs and nouns: The importance of being imageable. Journal of

Neurolinguistics, 16(2-3), 113-149. https://doi.org/10.1016/S0911-6044(02)00016-7

Butterworth, B., Howard, D., & McLoughlin, P.J. (1984). The semantic deficit in aphasia: The relationship between semantic errors in auditory comprehension and picture naming. *Neuropsychologia*, *22*, 409-426.

 Dalton, S. G. H., Shultz, C., Henry, M. L., Hillis, A. E., & Richardson, J. D. (2018). Describing Phonological Paraphasias in Three Variants of Primary Progressive Aphasia. *American Journal of Speech-Language Pathology*, 27(1 Suppl), 336–349. https://doi.org/10.1044/2017_AJSLP-16-0210

Le, Duc & Licata, Keli & Mower Provost, Emily. (2018). Automatic Quantitative Analysis of Spontaneous Aphasic Speech.

Speech Communication. 100. 10.1016/j.specom.2018.04.001.

MacWhinney, B., Fromm, D., Forbes, M. & Holland, A. (2011). AphasiaBank: Methods for studying

discourse. Aphasiology, 25,1286-1307.