Carnegie Mellon University

Automated Analysis of Fluency Behaviors in Aphasia Davida Fromm^a, Brian MacWhinney^a, Steffi Chern^b, Zihan Geng^b, Mason Kim^b, Joel Greenhouse^b ^aDepartment of Psychology, ^bDepartment of Statistics and Data Science

Background & Research Aims

- Fluency is fundamental to assessment, diagnosis, and treatment in aphasia. • Yet, the definition and measurement of fluency can be difficult (Gordon,
- 1998).
- The easy, smooth flow of speech can be disrupted in different ways for different reasons:
 - o basic word-finding problems can manifest in frequent pauses, revisions, and false starts
 - o agrammatism can manifest in telegraphic speech
- o coexisting apraxia of speech can manifest in effortful groping and self-corrections
- Fluency is scored with subjective ratings on traditional aphasia batteries
- Research Aims:
 - To improve efficiency, reliability, and validity of fluency measurement in aphasia
 - To determine how aphasia groups differ on outcome measures of fluency
 - To determine which fluency variables predict type of aphasia

Methods

Database

- Cinderella storytelling transcripts from all AphasiaBank (MacWhinney et al, 2011) participants (from first session, if multiple) – **228 controls, 289 PWAs** (103 Anomic, 72 Broca, 57 Conduction, 26 Wernicke, 31 NotAphasicByWAB-NABW)
- Transcripts were done in CHAT format by trained and experienced transcribers

Transcript Analysis

- FLUCALC CLAN command, provides preconfigured analyses of raw and proportioned counts of individual types of disfluencies from CHAT transcripts time-linked to audio/video files
- Non-task related utterances were excluded
- o flucalc +t*par +a +b *.cind.cex
- \circ +a gets pause time values from %wor tier, +b selects word mode analyses

Outcome Measures

• % filled pauses (&-uh, &-um), % word and phrase revisions ([//]), % word and **phrase repetitions** ([/]), **% fragments** (&+sh) – manually coded into speaker line transcription, for example:

*PAR: <and &-um she's all> [//] &+e well they're all excited (a)bout it. *PAR: and &-um &-um &-um the [/] the king wants the prince to get married.

• intra-utterance pause time (total unfilled pause time, msec), inter-utterance pause **time** (msec)-- automatic computation from word and utterance alignment

*PAR: and she heard a giggle . •3148977_3151347•

%wor: and •3148977_3150027• she •3150357_3150477• heard •3150617_3150817• a •3150817_3150867• giggle •3150867_3151347• .

*PAR: and she looked . •3153128_3153928• %wor: and •3153128_3153318• she •3153318_3153408• looked •3153408_3153928•.

• total utterances, total words, words/minute – automatic computation from transcript

1. Group Differences: ANOVA Tests and Tukey's Honest Significant Difference (HSD) test

GROUP	% word repetitions	% phrase repetitions	% word revisions	% phrase revisions	% fragments	% filled pauses	intra- utterance pause time	inter- utterance pause time
Control	< every aphasia group	< every aphasia group	< every aphasia group	< every aphasia group	< every aphasia group	< every aphasia group EXCEPT Wernicke	< every aphasia group	< every aphasia group
NABW		< Broca < Cond.	< Cond.	< Cond.				
Broca								> every aphasia group

2. Principal Components Analysis: Correlation between Variables and PCs, Scatterplot by Groups

- Log Number of Utterances Log Number of Words Log Words Per Minute Log % Whole Word Repetition Log % Phonological Fragment Log % Phrase Repetitions Log % Word Revisions Log % Phrase Revisions Log % Filled Pauses Log Internal Utterance Pause Duration -0.40 -0.04
- in language samples.

- variables.

Gordon, J. K. (1998). The fluency dimension in aphasia. *Aphasiology*, 12(7-8), 673-688. Ratner, N. B., & MacWhinney, B. (2018). Fluency Bank: A new resource for fluency research and practice. Journal of Fluency *Disorders*, *56*, 69-80. MacWhinney, B., Fromm, D., Forbes, M., & Holland, A. (2011). AphasiaBank: Methods for studying discourse. Aphasiology, 25(11), 1286-1307.

Data Analysis & Results

Discussion & Future Work

• FLUCALC greatly increases the speed, efficiency, and reliability of measuring objective fluency behaviors • Aphasia groups differ from controls on all fluency variables with one exception (Wernicke, filled pauses). • Together, PC1 and PC2 captured ~60% of the total variance (34.76 and 25.29%, respectively). • PC1 relates mostly to quantity and rate of speech; PC2 relates to fluency (e.g., revisions and repetitions). • The log number of utterances and log number of words are positively correlated with each other, while log % *phrase repetitions* and log % *word revisions* are positively correlated with each other. • Some NABW and Wernicke participants in the Control group, suggesting good fluency. • The PCA scatterplot and Gaussian Mixture Modeling suggests 3 major clusters based on these fluency

• The clusters correspond to Controls, Nonfluent aphasia (Broca's), and Fluent aphasia (NABW, Anomia, Conduction, Wernicke's), illustrating the validity of these clinically relevant fluency outcome measures.

• We want to repeat these analyses with the same groups on other discourse tasks. • We want to continue to develop and explore the uses of FLUCALC for this population.

References

А	
В	
С	
с	+
Ν	
v	*