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Abstract

Automatic recognition of aphasic speech is challenging due to
various speech-language impairments associated with aphasia
as well as a scarcity of training data appropriate for this speaker
population. AphasiaBank, a shared database of multimedia in-
teractions primarily used by clinicians to study aphasia, offers
a promising source of data for Deep Neural Network acoustic
modeling. In this paper, we establish the first large-vocabulary
continuous speech recognition baseline on AphasiaBank and
study recognition accuracy as a function of diagnoses. We in-
vestigate several out-of-domain adaptation methods and show
that AphasiaBank data can be leveraged to significantly improve
the recognition rate on a smaller aphasic speech corpus. This
work helps broaden the understanding of aphasic speech recog-
nition, demonstrates the potential of AphasiaBank, and guides
researchers who wish to use this database for their own work.
Index Terms: speech recognition, acoustic modeling, aphasia,
AphasiaBank, out-of-domain adaptation

1. Introduction
Aphasia is a common neurological disorder that impairs a per-
son’s speech and language capabilities. It is estimated that over
1 million people in the US have aphasia and 180,000 acquire
it every year1. Persons with aphasia (PWAs) face serious com-
munication difficulties and frequently experience social isola-
tion [1–4]. Speech-based technology offers PWAs many poten-
tial benefits due to its low cost and constant accessibility [5–7].

In our previous works, we investigated the feasibility of
an automated intelligibility assessment system which may help
PWAs improve their verbal output and long-term prognosis
[6, 7]. A major roadblock in the future automation of these
works is the poor performance of automatic speech recognition
(ASR), which hindered the system’s efficacy in real-time. ASR
for aphasic speech is considerably challenging for a number of
reasons. Firstly, a PWA’s pronunciation can be distorted due to
co-occurring motor control disorders such as apraxia of speech
(AOS) and dysarthria. Secondly, language impairments may
result in halting speech containing jargon and various types of
paraphasia, all of which are difficult to capture with conven-
tional ASR methods. Thirdly, the size of most aphasic speech
datasets is relatively small, partly due to the difficulties involved
in collecting this type of data at a large scale. This data scarcity
reduces the utility of modern ASR methods such as Deep Neu-
ral Network (DNN) acoustic modeling, which typically requires
a large amount of data to outperform the traditional Gaussian
Mixture Model (GMM). The lack of data is further exacerbated
by the high speaker variability among PWAs.

1http://aphasia.org/?q=content/aphasia-faq. Retrieved March 2016.

In this paper, we present a study that aims to enhance the
quality of aphasic speech recognition by leveraging data from
AphasiaBank, a shared multimedia database primarily used by
clinicians to study aphasia [8]. We establish the first large-
vocabulary continuous speech recognition (LVCSR) baseline on
English AphasiaBank using DNN acoustic models. We find that
appending utterance i-vectors to frame-level acoustic features
results in a 3.1% to 15.1% relative reduction in per-speaker
Phone Error Rate (PER), with more severe speakers receiving
larger improvement. We investigate out-of-domain adaptation
methods to adapt AphasiaBank to the University of Michigan
Aphasia Program (UMAP) dataset, a smaller aphasic corpus
used in our previous works for speech intelligibility assess-
ment [6, 7]. We show that discriminative pretraining produces
a 18.8% ± 9.1% relative reduction in per-speaker PER com-
pared to a baseline without using AphasiaBank, with less severe
PWAs benefiting more from adaptation. Our work helps further
the understanding of aphasic speech recognition, provides in-
sights into the types of speakers who would benefit from differ-
ent adaptation techniques, demonstrates the potential of Aphasi-
aBank in ASR, and suggests that real-time feedback, which re-
lies heavily on ASR, may be feasible in certain contexts.

2. Related Work

2.1. ASR for Disordered Speech

There has been extensive work in the related field of dysarthric
speech recognition [9–15]. ASR for dysarthric and disordered
speech in general is faced with abnormal speech patterns, high
speaker variability [16], and data scarcity [11]. Methods for
alleviating these problems include speaker-dependent GMM
adaptation [9, 11, 12], generation of auxiliary acoustic features
used within tandem-based systems [10, 14], learning speaker-
specific pronunciation [13], and speaker selection [15]. Most of
these works focused on isolated word recognition and used the
traditional HMM-GMM model. Our work investigates continu-
ous ASR and the more recent HMM-DNN framework.

There has been relatively little work on ASR for aphasic
speech. Existing works are limited to using healthy acous-
tic models to recognize aphasic speech [5, 17]. Further, apha-
sia and dysarthria have several key differences. A PWA’s ver-
bal expression is modulated by language impairment and co-
occurring motor control disorders, which often include AOS
and dysarthria itself. AOS can make the speech produced by
PWAs inconsistent, thus increasing the degree of intra-speaker
variability. Verbal output of different PWAs may differ drasti-
cally depending on the specific aphasia type, such as fluent and
non-fluent aphasia. It is unclear whether or not techniques that
work for dysarthria will also translate to aphasia.



2.2. Under-Resourced ASR

Disordered speech recognition also shares important similari-
ties with low-resource ASR due to the issue of data scarcity.
Common techniques for handling this problem include deep
bottleneck [18, 19] or posterior-based [20] features used within
tandem-based systems [21], and discriminatively pretrained
DNN acoustic model using out-of-domain data [22]. A shared
theme of these methods is the use of external speech (e.g., multi-
lingual data) for enhancing the performance of in-domain mod-
els. In the context of ASR for disordered speech, out-of-domain
data usually consist of healthy speech [10, 14]. However, there
is an inherent mismatch between healthy and disordered speech
[11], suggesting that healthy speech data may not be the most
appropriate choice for out-of-domain adaptation. We leverage
aphasic speech directly as out-of-domain data in this work.

2.3. ASR with I-vectors

Another popular auxiliary feature for ASR is i-vector, which
encapsulates speaker characteristics in a fixed-length represen-
tation and is commonly used in speaker verification [23, 24].
Appending i-vectors to frame-level acoustic features has been
shown to improve ASR performance with DNN acoustic mod-
els [25–27]. I-vector is a promising approach for handling the
high speaker variability present in disordered speech; however,
its application to this type of data has been limited.

3. Data
3.1. ApahasiaBank

AphasiaBank is a shared audiovisual database containing inter-
actions between PWAs and research investigators, and is pri-
marily used by clinicians to study aphasia [8]. AphasiaBank is
a collection of multiple sub-databases collected by different re-
search groups under various recording conditions and elicitation
protocols. For this work, we consider English sub-databases
containing at least four speakers and were collected with the
AphasiaBank protocol, which involves open-ended questions
designed to collect verbal discourse samples from PWAs.

Our inclusion criteria selected 18 sub-databases containing
401 speakers (238 male, 163 female, age 62 ± 12). The PWA
breakdown by WAB-R’s Aphasia Quotient (AQ) [28] is: 43.4%
mild, 32.7% moderate, 9.2% severe, 3.2% very severe, and
11.5% unknown. 63.8% and 24.9% of speakers have fluent and
non-fluent aphasia, respectively; the remaining have missing di-
agnoses. We further discard 3.8% of utterances that have unin-
telligible or overlapping speech as these may fail to align prop-
erly. The final dataset contains 89.2 hours of speech, 64,748
utterances, and 458,138 instances of 11,803 unique words.

We downsample the audio to 16kHz and extract 12 MFCCs
plus energy, along with delta and delta-delta coefficients. We
z-normalize the features at the speaker level. Finally, we per-
form 4-fold partitioning to help establish an ASR baseline on
AphasiaBank. We withhold 25% of speakers from each sub-
database to form the test set. We further withhold 15% of train-
ing speakers from each sub-database to form a development set
for parameter tuning. The test sets across these four folds form
a complete partition of AphasiaBank. The per-fold training set
contains approximately 56 hours of speech data.

3.2. UMAP

The UMAP dataset contains speech recordings of 17 PWAs (11
male, 6 female, age 58 ± 14) interacting with a tablet applica-

tion designed for sentence building exercises. PWAs are pre-
sented with a picture stimulus and asked to verbally produce a
sentence to describe the picture. Five, nine, and three speak-
ers have mild, moderate, and severe aphasia based on WAB-R’s
AQ. Nine have AOS and one has dysarthria. Eight have fluent
aphasia and nine have non-fluent aphasia. This dataset was used
in our previous work to develop methods for automatic speech
intelligibility assessment [6, 7]. A major bottleneck in these
works was the reliance on human-labeled transcripts. Achiev-
ing good ASR performance on this dataset will move us closer
to deploying the system for real-world usage.

The data were recorded using the tablet’s built-in micro-
phone with a 44.1 kHz sampling rate. All utterances were tran-
scribed at the word-level with timing information by human an-
notators. Special events such as unintelligible words and back-
ground noise are marked with special labels. We split each ut-
terance into continuous segments of intelligible speech, each of
which contains on average 2 to 4 words. We will perform ASR
evaluation on these segments. The segment-level data contains
in total 2.1 hours and 12,661 instances of 1,073 unique words.

We apply an identical feature extraction pipeline used in
AphasiaBank. ASR evaluation will be done through leave-one-
speaker-out cross-validation, which results in 17 folds where
data from one speaker are withheld for testing and the rest are
used for training. We further withhold 15% of utterances from
each training speaker to form a development set. The size of the
per-fold training set ranges from 1.7 to 2 hours.

4. Experimental Setup
4.1. Intra-Database Speech Recognition

In this section, we outline our experiments for intra-database
speech recognition, which will result in a speaker-independent
cross-validated PER for each database. We consider two classes
of methods, one based on the traditional context-dependent tied-
state triphone HMM-GMM model, and one based on the more
modern hybrid HMM-DNN system [29, 30]. We train two ver-
sions of HMM-DNN, one with and one without i-vectors in the
input features. Details about this experiment are summarized
in Table 1. We used Kaldi [31] for HMM-GMM modeling and
i-vector extraction, and Theano [32] for DNN training. Addi-
tional data for replicating this work, such as fold selection, tran-
scription, and audio segmentation, are available online2. For the
remainder of this section, we will elaborate on the hyperparam-
eter choice, learning schedule, and i-vector extraction.

4.1.1. Hyperparameter Selection

HMM-GMM and HMM-DNN both require a number of hand-
picked hyperparameters, such as the number of Gaussians and
tied-states for the former, and the DNN architecture and training
recipe for the latter. Hyperparameters for AphasiaBank were
selected based on the average PER achieved on the develop-
ment set across all four cross-validation folds. On the other
hand, hyperparameters for UMAP were selected using an ora-
cle method that optimizes for test PER. Doing so helps us obtain
the strongest UMAP baseline to compare against out-of-domain
adaptation techniques described in later sections.

4.1.2. Learning Schedule

Learning schedule refers to the adjustment of learning rate af-
ter each DNN stochastic gradient descent epoch. We find that

2http://www.umich.edu/ ducle/IS16appendix



AphasiaBank UMAP

HMM-GMM
Context-dependent tied-state triphone trained with Maximum Likelihood estimation.

Parameters:
25,000 Gaussians; approx. 3,000 tied states. 8,000 Gaussians; 700-800 tied states.

HMM-DNN

Randomly initialized DNN (5 hidden layers, 1024 units per layer, sigmoid activation) trained with stochastic
gradient descent using 27-frame context windows, HMM-GMM alignments, and Cross-Entropy objective.

Training without i-vectors: exponential-decay learning schedule (0.4 initial learning rate, 0.05% threshold).
No regularization. 2× 10−5 L2 regularization weight.

Training with i-vectors: step-decay learning schedule (learning rates: 0.4 initial, 0.01 minimum).
10−5 L2 regularization weight. 2× 10−5 L2 regularization weight.

i-vectors

Universal Background Model (UBM): 1024 Gaussians trained on 9-frame spliced MFCCs, followed by
40-dimensional Linear Discriminant Analysis (LDA) with senones as class labels. Only voiced frames are used.

Type of i-vector:
32-dimensional utterance-level. 32-dimensional session-level.

Decoding Continuous phone loop using trigram phone-level language model with backoff.

Table 1: Training and decoding methods for intra-database ASR. See text for description of learning schedule and i-vector type.

different learning schedules must be used for models with and
without i-vectors to achieve optimal results.

Exponential-decay: This schedule first trains the network
at a fixed initial learning rate (e.g., 0.4). Once the change in
frame-level error on the development set drops below a thresh-
old (e.g., 0.05% absolute), we halve the learning rate after ev-
ery epoch. The training process terminates once the change in
development error once again drops below the threshold. We
find that this schedule is appropriate for models without using
i-vectors, possibly because it finishes faster and avoids overfit-
ting the network to the training set, which is easier to do without
having additional features to model.

Step-decay: This schedule is similar to the one used in
[29]. Instead of halving the learning rate after every epoch, it
halves the learning rate and restores previous network weights
whenever the development error does not improve. The training
process terminates once the learning rate drops below a mini-
mum value (e.g., 0.01). We find that this schedule is appropri-
ate for less stable and more slowly converging learning process,
such as when i-vectors are used.

4.1.3. I-vector Extraction

We set the i-vector dimension to 32, based on validation results
on one training fold and the system described in [27]. Follow-
ing [26], we extract utterance-level i-vectors for AphasiaBank.
However, we find that this type of i-vector does not work well
on UMAP, possibly because the utterances in the latter are too
short. We instead use session i-vectors, which are extracted
from all speech data produced by the PWA in one single record-
ing session. There are 125 sessions, each containing 1 minute
of speech on average. Refer to Table 1 for more information.

4.2. Adapting AphasiaBank to UMAP

We consider two methods in this work to use AphasiaBank data
to improve recognition results on UMAP.

merged: In this method, we merge the full AphasiaBank
corpus’ training and development set with the UMAP counter-
parts, and train a new DNN using the same recipe and architec-
ture described in Table 1. This method allows the network to di-
rectly model UMAP data while also modeling the large amount
of speech present in AphasiaBank. A potential disadvantage
of this method is that it might not model UMAP data exten-
sively since UMAP contributes only a relatively small fraction

of training data. It is also more computationally expensive.
dpAB: We investigate discriminative pretraining with

AphasiaBank data inspired by the work of Thomas et al. for
low-resource ASR [22]. The authors in [22] proposed retrain-
ing only the softmax layer while keeping the lower layers fixed.
However, we find that retraining the entire AphasiaBank DNN
on the UMAP training set, using the step-decay learning sched-
ule and no regularization, yields better results. This suggests
that the high-level representation learned by AphasiaBank DNN
does not transfer directly to UMAP data. This indicates a large
mismatch between the two datasets, and further suggests that
methods which aim to constrain the shift in parameters from
the original model by inserting additional layers on top of a
fixed network [33] or regularizing the change in output distri-
bution [34] may have limited efficacy. However, speaker adap-
tation on the same dataset, which does not suffer from such data
mismatch, may benefit greatly from these approaches.

We also considered using deep bottleneck features (DB-
NFs) generated by AphasiaBank DNN in a tandem-based sys-
tem. However, our preliminary experiments were not able to
outperform the HMM-GMM baseline. Again, this may be
due to the high level of mismatch between AphasiaBank and
UMAP. As a result, we do not consider DBNFs in this paper.

5. Results and Discussion
5.1. AphasiaBank Phone Error Rate

Table 2 summarizes the mean and standard deviation of speaker-
level PERs on AphasiaBank, where the speakers are grouped by
the level of severity defined by WAB-R’s AQ.

We first turn attention to the relatively high PERs achieved
on this dataset. This may be caused by the abnormal speech pat-
terns associated with aphasia that are difficult to capture with

Severity No i-vectors With i-vectors
mild 48.95 ± 11.55 47.41 ± 10.46

moderate 57.04 ± 13.22 52.79 ± 10.37
severe 65.44 ± 18.65 61.00 ± 13.20

v. severe 89.27 ± 29.14 75.81 ± 18.65
unknown 60.36 ± 29.75 54.35 ± 18.64

Table 2: AphasiaBank per-speaker PER, grouped by severity.



conventional ASR techniques. Speech data in AphasiaBank
were recorded using video cameras situated far away from the
speaker. This far-field recording condition is known to signif-
icantly reduce recognition performance. Two observations can
be made from these results. One, if we want to apply ASR tech-
nology to help improve the well-being of PWAs, it is crucial to
constrain the recognition problem in some way, such as restrict-
ing the vocabulary or task grammar. Aphasic speech may be
too challenging for unconstrained LVCSR to achieve an accept-
able recognition accuracy. Two, it is important to realize that
ASR is only a precursor and not an end goal for speech-based
technology aimed toward PWAs. It will be interesting to inves-
tigate tasks that can be performed reasonably well given imper-
fect ASR output. This will help us better understand what kind
of ASR-dependent technology is feasible for aphasic speech.

These results also show that both the mean and standard de-
viation of per-speaker PERs tend to increase as a PWA’s aphasia
becomes more severe on the WAB-R’s AQ scale. This is a use-
ful observation as it shows that AQ, despite being a measure of
general language skills and not of speech itself, can be a rea-
sonable estimate for the effectiveness of ASR. Being able to
predict how well an ASR system will work for a speaker using
readily available information such as AQ may help the system
adapt to that speaker more quickly and effectively. A natural
extension of this observation is to use a speaker’s severity level
directly as input to the DNN, such as encoding it as a one-hot
vector. However, our preliminary experiments indicate that this
approach does not yield additional improvement on top of i-
vectors. We will explore different methods to augment acoustic
modeling with PWAs’ diagnoses in future work.

Finally, we note the effectiveness of i-vectors for aphasic
speech recognition. Models that use i-vectors in the input fea-
tures experience a reduction in both the mean and standard de-
viation of per-speaker PER. While the relative improvement for
speakers with mild aphasia is relatively small (3.1%), the im-
provement is more noticeable for those with moderate to se-
vere (6.8% – 7.5%), and especially very severe aphasia (15.1%).
Christensen et al. noted that although their out-of-domain adap-
tation technique is quite effective, speakers with more severe
dysarthria tend to benefit less from adaptation [14]. Our results
suggest a complementary method for improving the recognition
rate of the more severe population.

5.2. UMAP Phone Error Rate

Figure 1 shows the PERs for different speakers in the UMAP
dataset using the HMM-GMM baseline model. The PERs range
from 20.8% to 71.2% (mean 39.7%, std. deviation 11.1%). We
will estimate the effectiveness of different adaptation methods
based on the resulting change in PER for each speaker. These
are summarized in Table 3.

The first two rows, AB-DNN and UMAP-DNN, refer to
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Figure 1: UMAP per-speaker PER using HMM-GMM baseline
trained only on UMAP data. x-axis denotes AQ severity level.

Model No i-vectors With i-vectors
AB-DNN 4.8 ± 15.1 3.4 ± 15.5

UMAP-DNN -1.0 ± 7.6 2.9 ± 9.0
merged -14.7 ± 9.3 -16.6 ± 8.9
dpAB -18.8 ± 9.1 -15.9 ± 7.6

Table 3: Relative change (%) in UMAP per-speaker PER over
HMM-GMM baseline. A negative value means reduced PER.
AB-DNN and UMAP-DNN are DNNs trained only on Aphasia-
Bank and UMAP data, respectively.

DNN acoustic models trained only on AphasiaBank and UMAP
data, respectively. Compared to the baseline, the resulting PERs
for both models improve for some speakers and worsen for oth-
ers, and there is no clear advantage to using either model. The
fact that UMAP-DNN was not able to outperform the HMM-
GMM baseline reinforces the data scarcity problem in aphasic
speech recognition. Looking at individual speakers, AB-DNN
tends to work better for those who are similar to the typical
speakers in AphasiaBank, namely those with mild and fluent
aphasia. On the other hand, there is no obvious pattern as to
which type of speaker benefits from the UMAP-DNN model.

Of the two adaptation methods, the best result (18.8% ±
9.1% relative improvement) is achieved with dpAB, which uses
UMAP data to finetune a DNN that was discriminatively pre-
trained on AphasiaBank. Speakers with mild severity receive
the largest improvement (22.5% ± 7.5%), while those with flu-
ent and non-fluent aphasia experience a similar degree of PER
reduction (19.2% ± 9.3% vs. 18.3% ± 9.0%). On the other
hand, the merged adaptation method provides more benefit to
those with fluent aphasia, resulting in 18.7% ± 6.1% relative
improvement compared to 14.7% ± 10.5% for non-fluent.

Finally, we analyze the effect of i-vectors on adaptation.
Using i-vectors resulted in better performance for AB-DNN and
merged, but worse performance for UMAP-DNN and dpAB. The
common theme among the two methods that were not able to
take advantage of i-vectors is that only UMAP i-vectors were
used for DNN training. On the other hand, using UMAP i-
vectors directly in testing (AB-DNN) or training them jointly
with AphasiaBank i-vectors (merged) proved beneficial. A pos-
sible explanation is that the 125 UMAP session i-vectors are
too few in number and too dissimilar for the network to take
advantage of in a speaker-independent setup. Additional work
is needed to leverage i-vectors in limited-data situations.

6. Conclusion and Future Work
In this work, we establish the first LVCSR baseline on Aphasi-
aBank, and show that AphasiaBank data can be leveraged to
improve the recognition rate on a smaller aphasic speech cor-
pus by a large margin through discriminative pretraining. Our
analysis suggests that discriminative pretraining provides more
benefit to PWAs with lower severity, while i-vector-based adap-
tation benefits those with higher severity. However, more work
is needed to combine the benefit of both approaches.

We plan to extend this work in two major directions. Firstly,
we are interested in the extent to which an improved ASR model
can replace human-labeled transcripts in our system for auto-
matic quantification of aphasic speech intelligibility [6,7]. Sec-
ondly, we will investigate more fine-grained adaptation meth-
ods based on diagnoses and other speaker properties. Given the
high speaker variability present in aphasic speech, more highly
personalized models may result in further gain.
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