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Abstract
Aphasia is an acquired language disorder, often resulting from a stroke, affecting nearly 580,000 people Europe alone each year (Huber
et al., 2013) . Depending on the type and severity, people with aphasia suffer, in varying degrees, from the impairment of one or
several of the four communication modalities. To choose an appropriate therapy for a patient, the extent of the aphasia at hand has to
be diagnosed. In Germany and other countries this is done using the Aachen Aphasia Test (AAT). The AAT consists of a series of
tests, requiring the patient to talk, read and write over the course of up to two hours. The AAT results then have to be evaluated by a
speech and language therapist, which takes around 6 hours. In order to further objectify the manual diagnosis and speed up the process,
a digital support system would be highly valuable for the clinical field. To facilitate such a system, we have collected, cleaned and
processed real-life clinical aphasia data, coming from AAT diagnosis sessions. Each dataset consists of speech data, a transcript and
rich linguistic AAT annotations. In this paper, we report on both challenges and early results in working with the (raw) clinical aphasia data.

Keywords: Clinical Aphasia Data, Multimodal Language Data, Rich Metadata

1. Introduction

Aphasia, i. e., the full or partial loss of linguistic capabilities
in adults, is usually an acquired condition, mostly due to
damage inflicted to the brain by ischemic or hemorrhagic
stroke, but also due to head injury, tumours or neurodegen-
eration. The loss of linguistic capabilities neither pertains
to the motor acts of speaking or writing nor the sensory
capabilities of hearing or seeing, but rather to damage to
the human brain’s ‘supra-modal’ capability of producing
and comprehending language. The consequences of aphasia
for the patient are immense: as language, both spoken and
written, is our main tool of communication, affected per-
sons are largely cut off from basic social interaction, leading
to severe disability, social isolation, loss of health-related
quality of life and depression. The socioeconomic impact
also is enormous, as persons suffering from aphasia are less
likely to return to their jobs (Wozniak and Kittner, 2002).
Thus, every effort has to be made to keep this percentage
of people dropping out of their jobs as small as possible,
necessitating the need for intensive rehabilitation. However,
as language is an extremely complex function of the hu-
man brain supported by a widespread network of neurons
throughout the human brain (albeit with a left-hemispheric
predominance), different patterns of damage to the human
brain, e. g., by occlusion of different vessels or by trauma
to different brain locations, will result in different aphasic
syndromes (Ardila, 2010). These are marked by differential
loss of putative linguistic modules (Heilman, 2006), such
as syntax, semantics, phonology and finally motor speech
output. Thus, it is obvious that aphasia rehabilitation is a
non-trivial task, and any success in rehabilitation can only
occur if and when the prominently hit modules are identified
correctly, resulting in a syndromal diagnosis also encom-
passing the severity of the damage, as there is no general
‘aphasia’ rehabilitation. In order to achieve a certain level
of objectivity and measurability in diagnosing and grading

aphasia syndromes, clinical tests and scores are employed.
In Germany and beyond, the Aachen Aphasia Test (AAT)
(Huber et al., 2013)) is regarded to be the gold standard in di-
agnosing and classifying aphasia. This test allows to assess
different language modalities at all linguistic levels. Beyond
that, it also yields information of probabilistic syndrome
classification and syndrome severity. Its disadvantages are
that the AAT is immensely time-consuming (up to 8 hours
for one patient including data acquisition and evaluation), it
does not encompass all linguistic symptoms a patient can ex-
hibit, and it is at least in part dependent on the experience of
the rater. Particularly the requirements on human resources
preclude its widespread use, although it is regarded to be a
prerequisite for, e. g., an intensive comprehensive aphasia
program. Besides, the AAT is not very sensitive to changes
over time, limiting its utility as a feedback and tracking tool.

Therefore, an automatic aphasia diagnosis system based on
the AAT would be highly valuable for patients and clini-
cians alike. Clinicians would profit from an increased ob-
jectivity of the AAT. Having an objective system in place
across different hospitals would also enable aphasia rehab
units to offer individualized rehabilitation strategies to their
(prospective) patients, because they could correlate their lan-
guage profiles with outcomes of therapeutic success within a
specific facility. Patients, e. g. mobility impaired stroke vic-
tims, would also benefit from an automatic AAT diagnosis
system within their home, making it a non necessity to go
the hospital every time for follow-up aphasia examinations.
In order to facilitate such a system, a high-quality data and,
ideally, large collection of speech and language data along
with diagnosis annotations is a prerequisite. During apha-
sia diagnosis sessions over the course of roughly 20 years
at the University Hospital Aachen, clinician-patient speech
was recorded, transcribed and, along with the corresponding
tests results, digitally archived. The data is in a variety of
formats, not available in one homogeneous database but



rather spread over multiple systems and the speech data is
a mix between clinician and patient speech. Nevertheless,
to the best of our knowledge, this data is one of the richest
collections of aphasia data in Germany. We therefore strive
to utilize this data to built an automatic AAT system. This
paper will not focus on the architecture of the system, but
rather present and discuss the challenges we encountered in
dealing with the clinical speech and language data itself.
The remainder of the paper is structured as follows: In
Section 2] we present related work. Section [3] discusses
aphasia, its diagnosis in general and introduces the Aachen
Aphasia Test in its current form. Following that, Section
discusses our work regarding the assembly of the database
and the dataset itself, including a description of its modali-
ties. In Section[5] preliminary results will be presented and
discussed. Afterwards, in Section[6] we conclude the paper.
Finally, in Section|/.| we outline future work.

2. Related Work

Computer programs designed to help diagnose and treat
aphasia can be categorized into three different groups (Katz.!
2010): Tools for ‘alternative and augmentative communi-
cation (AAC)’, which offer additional ways for aphasia pa-
tients to communicate, ‘Computer-only treatment (COT)’
such as smartphone apps designed to be used by apha-
sia patients to practice speaking without a therapist, and
‘Computer-assisted treatment (CAT)’ systems, which help
therapists during the therapy. Our system is initially de-
signed as a CAT system: While conducting a conversational
speech test, the system analyses the patients speech and
returns an aphasia score, as outlined in (Kohlschein et al..
2017). This contrasts many existing projects, which are
designed as COT systems.

A COT system which allows patients to build sentences
out of predefined clauses via a touchscreen interface, and
then requests that the patient reads out the sentence was
presented by (Le et al., 2016). The system aims to provide
feedback to the patient, such that the patient can practice
correct speech. For all predefined clauses, they recorded
healthy speech during development of the application. Fur-
thermore, this procedure provides, by design, a transcript
of the sentence the patient attempted to say. Additionally,
the audio file is transcribed after recording. Possession of a
transcript currently leads to better detection of aphasic and
especially paraphasic speech (Le et al., 2017). The transcript
allows to compare healthy speech to aphasic speech on a
per-word basis, and therefore to determine the fraction of
correct words compared to the total number of words. Addi-
tionally, transcripts based on the recordings can be used as
training data for automatic speech recognition (ASR) sys-
tems, while knowledge about which sentence the patient
attempts to say constrains the search space for ASR (Le et
al., 2016). Since our goal is to perform a rating on com-
pletely spontaneous clinical speech in the context of CAT
systems, we do not have predefined sentences or clauses.
However, we have aphasia syndrome and severeness ratings
for all recordings, which were made by speech therapists
or neurologists. This contrasts the ratings used by Le et al.
which were made by trained students, and led to the require-
ment of a reduced number of severeness categories because

the agreement on ratings of the same utterance between
different evaluators was low. In 2013, (Fraser et al., 2013)
compared different approaches to automatically identify sub-
types of primary progressive aphasia. They compared two
different techniques for feature detection. The first approach
they tried is to perform a Welch t-test on features extracted
from audio and transcript files of aphasic speech, compared
to healthy speech. Then, they ranked the results based on the
p-values obtained from the t-test results and selected only
the most significant features. Their second approach is based
on the minimum-redundancy-maximum-relevance (mnRMR)
technique proposed by (Peng et al., 2005). Subsequently,
Fraser et al. compared a probabilistic Naive Bayes classifier
to Support Vector Machines (SVMs) and Random Forests
(RFs). Their results showed that, aphasia subtype detection
is more accurate when combining acoustic and transcript
data, compared to acoustic data alone. However, even if
only acoustic data is available, classification of primary pro-
gressive aphasia patients and control group members had an
average accuracy of 74.05 %, with Random Forests applied
on a feature set chosen by an mRMR algorithm performed
best at close to 90 % accuracy. Interestingly, the mRMR
selection performed worse than the p-value feature selector
when applied to a decision problem between the two aphasia
subtypes.

The available aphasia speech data in the University Hospital
Aachen consists of spontaneous speech interviews between
a clinician and a patient. As an alternative to segmenting
all the data manually, we investigated automatic systems
as well, i. e., using speaker diarization. Speaker diarization
can be classified into bottom-up and top-down approaches.
These are based on splitting the audio sample into segments
using an heuristic identifying changes in loudness, band-
width and frequency, which implicate speaker changes. In
the next step, these segments are clustered and segments
in the same cluster are recombined (Tranter and Reynolds|
2000). The goal of the clustering is to form one cluster per
speaker, requiring a clustering based on a method that dis-
tinguishes between speakers, but does not discriminate intra
class. The top-down approach is based on starting with one
cluster and iteratively differentiating it into an ideal amount
of clusters, while the bottom-up approach starts with a high
number of clusters and iteratively merges similar clusters
(Bozonnet et al., 2010). Different approaches for clustering
have been proposed. These include using Gaussian Mixture
Models to model speakers (Castaldo et al., 2008)) based on
a sliding window and using eigenvoices as features. Eigen-
voices are feature vectors in a vector space whose basis
was determined using principle component analysis on the
extracted features, causing a model that is based on dimen-
sions which had a high variance in the original feature set
(Kuhn et al., 2000). Another method, introduced in (Sell
and Garcia-Romero, 2014), is to apply agglomerative hierar-
chical clustering based on scores retrieved by computing the
pairwise similarity of all i-vectors using probabilistic linear
discriminant analysis, merging those that are most similar.
There also have been approaches based on identifying speak-
ers by training deep neural networks to identify speakers
and subsequently extracting their hidden layer feature activa-
tions, under the assumption that similar activation patterns



imply that two speakers are the same (Rouvier et al., 2015).
The authors of (Isik et al., 2016) also presented an approach
based on deep clustering capable of single-channel multi-
speaker separation. Finally, (Zhang et al., 2017) presented a
diarization approach based on paralingustic cues, e. g., age
and gender.

Few collections of aphasic data are publicly available, the
most prominent being the AphasiaBank (MacWhinney et
al., 2011)), which is mostly for the English language domain.
More recently, a Greek data set (GREECAD) was made
available by (Varlokosta et al., 2016). Both data sets con-
trast our data collection in several ways. GREECAD was
assembled with scientific purposes in mind and subsequently
annotated and transcribed by humans in a predefined way,
thereby maximizing the agreement between evaluators to
get uniform and coherent annotations. Additionally, ma-
chine readability and processability was taken into account
when choosing the data format and recording the patients. In
contrast, the data set of the University Hospital Aachen was
solely collected for clinical diagnosis purposes during assess-
ment sessions over a couple of years. Therefore, machine
readability was not taken into account while assembling and
recording the data, which in turn poses challenges for the
automatic processing of it. These challenges include, but
are not limited to missing or incorrect meta data, such as
therapist attribution, and mono-channel recordings with low
cost microphones, requiring a speaker diarization procedure
capable of handling open speaker groups, with high noise
tolerance and which does not rely on language models, as
these do not apply to aphasic speech.

Transcripts and annotations were made by clinical speech
and language therapists for the aphasia domain, whereas
the Greek data set was transcribed by linguists (graduate or
post graduate students). Our data currently contains tran-
scripts roughly four times the amount of aphasic utterances
in GREECAD, but does not contain a control group (due
to the origin of the data). The AphasiaBank data set has
similar properties as the Greek data set, albeit being larger.
Additionally, the AphasiaBank contains video recordings of
patients (which are not available for both GREECAD and
Aachen data sets).

3. Aphasia Syndromes and Diagnosis

Due to the fact that linguistic modules usually are located in
distinct neuroanatomical regions of the brain, and that the
vascular supply also encompasses distinct areas, occlusion
of the trunk or a particular branch of the middle cerebral
artery (MCA) leads to typical combinations of linguistic
symptoms, called aphasic syndromes. Testing the different
linguistic domains thus allows classification of the apha-
sic syndrome and prediction of the location of the lesion.
However, anatomical variations, incomplete or pre-existing
lesions or non-vascular lesions can lead to non-standard
syndromes, which are then called unclassified aphasia. Ad-
ditionally, some symptoms can be mapped to anatomical
areas that are not solely defined by their vascular supply
(Henseler et al., 2014). Typically, however, the following
syndromes will occur after an ischemic stroke: occlusion of
the main trunk of the MCA (M1 segment) leads to destruc-
tion of almost all perisylvic areas concerned with speech

and language and subsequent Global aphasia. The result-
ing speech is characterized by a profound loss of syntax
and severe disturbances in word retrieval and semantics,
sometimes leaving the patient with recurring utterances or
automatisms only. Full mutism can occur and language com-
prehension is severely affected. Occlusion of the anterior
branches usually leads to so-called Broca’s aphasia, marked
by non-fluent spontaneous speech (which is monotonous
and lacking prosody) and agrammatism. Language com-
prehension is relatively spared. Lesions in areas supplied
by posterior branches of the MCA can lead to Wernicke’s
aphasia which is characterized by fluent spontaneous speech,
which however is accompanied by severe disturbances in lan-
guage comprehension and the use of overshooting, long and
tortuous sentences filled with neologisms and paraphasias —
a symptom that is called paragrammatism. Prosody usually
is preserved. Amnestic aphasia is caused by a prominent
deficit in word-finding capabilities, while language compre-
hension and prosody are usually preserved.

Thus, a diagnosis of aphasia is made by testing the presence
and severity of the different linguistic symptoms. For this
purpose, many validated tests are available in addition to
the clinician’s expertise that probe variable aspects of the
patient’s linguistic capabilities. As outlined above, the gold
standard in Germany for aphasia diagnosis is the Aachen
Aphasia Test (AAT) (Huber et al., 2013)). Its purpose is
to assess different language modalities (i.e., understand-
ing, writing, reading, speaking) at all linguistic levels. Be-
yond that, it also yields information of probabilistic aphasia
syndrome classification and syndrome severity. The AAT
consists of six parts in total, testing different speech and lan-
guage modality impairments and differentiations. First, and
most-important for our current research, an approximately
10 minutes long semi-structured interview is conducted by
a clinician. The purpose of the interview is to assess the
spontaneous speech capabilities of the patient. Usually,
the patient gets to tell about the circumstances the aphasia
syndromes first appeared (e. g., when and where a stroke
happened and what they where doing), about treatment, fam-
ily and job etc. The interview is followed by a series of five
tests where the patients gets to read, write and has to identify
certain tokens. During the AAT, the clinician records the an-
swers on an protocol sheet and takes notes. The interview of
the spontaneous speech part is recorded using a basic micro-
phone setup and later transcribed by the clinician, typically
a speech and language therapist (SLT). Both the evaluation
sheet, the recording and the transcription then constitute
the basis for the subsequent diagnosis, which takes up to 6
hours.

While the concrete answers of the patients for each of the five
non-interview tests are not directly accessible by us, we only
have their final AAT evaluation results, we have access to the
raw speech recordings, transcripts and diagnosis results of
the (spontaneous speech) interview section. This data forms
the basis for our research and the topics discussed in this
paper. Each spontaneous speech sample together with its
corresponding transcript is evaluated on six different speech
impairment levels and on a six point scale (with 0 being the
most severe and 5 meaning no impairment) by a clinician.
The levels are (Huber, 1983)):



1. Communication behavior: Describes the ability of the
patient to conduct a dialog, i.e., to understand ques-
tions from the clinician and respond to them, to utter
speech-based information.

2. Articulation and prosody: Impairments of the speech
are described in this level, in particular fluidity, vocal-
ization, preciseness, speed, rhythm.

3. Automatic speech: Features of the speech which are
produced automatically by the patient during the dialog
are accounted for in this level, e. g., recurring utterances
or echophrasias (e. g., repeating phrases of what the
clinician said).

4. Semantic structure: This level evaluates the ability of
the patient to pick words and to differentiate between
their meaning. Furthermore, it evaluates if the patient
picks meaningless set phrases.

5. Phonemic structure: Evaluates the order of phonemes
in uttered words, e. g., if they are added, dropped, re-
peated or shuffled.

6. Syntactic structure: This level accounts for the com-
pleteness and complexity of sentence parts, their order
and amount, and for inflections.

During diagnosis, items 1. and 2. are mostly evaluated on
a qualitative level, e. g., is the patient able to communicate
daily matters, while 3. — 6. are evaluated on a quantitative
level, e. g., the amount of automatisms in the transcript is
counted manually.

4. Clinical Aphasia Data Collection and
Preprocessing

The available aphasia data in the University hospital con-
sists of several hundred AAT sessions over the course of
nearly 20 years. This data was spread over multiples systems
within the aphasia ward and was not available in one homo-
geneous file format (i. e., a mix of txt, doc, docx and PDF
documents). To make the data usable for research, we first
had to consolidate this data and integrate it into one database.
Furthermore, not all datasets were usable for the goal of de-
veloping an automatic AAT and had to preprocessed. Some
patients had no transcripts, some had no diagnosis sheet,
while others where lacking the speech recordings. After a
mixture of automatic and manual consolidation, we arrived
at a database of 442 complete AAT diagnosis results from
343 patients (some patients took the AAT several times, i. e.,
for follow-up exams). Each AAT result has a corresponding
speech sample in audio format and 388 of them are tran-
scribed. The speech sample stems from the recording of
the spontaneous speech evaluation, i. e., the interview, con-
ducted with the clinician. The following sections describes
each modality in detail.

4.1. Ratings

Each patient’s spontaneous speech performance is rated ac-
cording to the six categories listed above (see section [3.).
The corresponding rating distributions are shown in Figure[2]
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Figure 1: Distribution of aphasia syndromes in the UKA
AAT database

Aphasia Type #Patient | #Utt. Patient (Avg.)
Amnestic 40 491 (12.28)
Broca 53 1225 (23.11)
Global 61 1562 (25.61)
Wernicke 40 612 (15.30)

Table 1: Amount of transcribed utterances available for each
of the four most prevalent aphasia syndromes in the UKA
AAT database

Notably, there is no test result with a communication impair-
ment rating of zero, as this would be equal to not showing
any reactions at all during a conversation, including any
non-verbal reactions such as gestures. Additionally, most of
the of the samples contain an aphasia severeness rating and
an aphasia syndrome diagnosis (e. g., a mild Broca Aphasia).
The severeness is rated in five severeness levels, but appar-
ently only mild, moderate to severe and severe are used by
most therapists. The aphasia syndrome is classified in six
categories, with the most prevalent syndromes being global
aphasia, Broca’s aphasia, and Wernicke’s aphasia. There is
an additional category for inconclusive syndromes, i. e., syn-
dromes that are not clearly distinguishable between multiple
categories or which do not fit into any category at all (see
Figure[T). Furthermore, each AAT sheet also contains the
ratings of the 5 other tests, such as the token test. About half
of the available AATS also contain information on which
therapist conducted the test. There are 104 different thera-
pist names. The most involved therapist conducted 75 tests,
while the overwhelming majority of therapist names occurs
only once (however this information is not normalized as it
was manually entered by therapists). It is entirely possible
that the same therapist is referred to under different names
such as initials and surname. Due to privacy concerns, in-
formation about the patients was anonymized, i. ., neither
name, age or gender is given in the data.
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Figure 2: Distribution of AAT speech impairment ratings in
the UKA AAT database

4.2. Speech

Each spontaneous speech sample is available as an MP3;
most of them are mono recordings. Since the data stems
from the course of 20 years, we cannot state the exact type
of audio setup for each recording session. As of 2017, the
audio setup consists of one microphone positioned between
the patient and the clinician. The recording is started manu-
ally by the clinician once the spontaneous speech test starts
and stopped afterwards. The total duration of all recordings
combined is around 63.7 hours. This includes both patient
and clinician speech. In order to be able to evaluate apha-
sic speech, we needed to extract the patient portion of the
interview. This can either be done manually or using an
automatic speaker diarization system. A completely man-
ual source separation is a very time consuming matter. We
found that it took at least 5 — 7 minutes on average to split 1
minute of interview speech (currently, the segmentation is
ongoing). Depending on the aphasia syndrome, especially
in global aphasia, patients talk only briefly, sometimes ut-
tering just an interjection, before the clinician talks again.
That contributes to the necessary time invest, because one
has to constantly start and pause the recordings to do the
tagging. On the contrary, patients with Wernicke’s aphasia
tend to talk much longer, but from time to time the clinician
makes a comment, leading to an overlap between patient and
clinician speech. Again, this segments have to be identified
by hand. For a comparison of two different aphasia speech
sections see Figures[3]and ]

As an alternative to a completely manual split of the speech
data, we also tested a commercial tool and the open-source
framework pyAudioAnalysis (Giannakopoulos, 2015) for
speaker diarization. Neither automatic tool could provide
the quality of segmentation needed for our research. We
attribute this to the difficulty of speaker diarization itself
and the complexity of our disease related data. Sometimes,
the segmentation contained alternating patient and clinician
speech, sometimes both parties were talking, sometimes a
mono person segment was labeled as patient when it was in
fact the clinician talking and vice versa. We experimented
with counteracting the later case by building a binary clas-
sifier able to distinguish between aphasia and non-aphasia
speech. For this, we extracted 45,912 utterances from the En-
glish AphasiaBank corpus ((MacWhinney et al., 2011))) and
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Figure 3: 25 seconds snippet of an global aphasia speech
interview. To each question (e.g., “how did the disease
start?”) the patient (P) responds with a short “um” utterance.

[

Figure 4: 25 seconds snippet of an Wernicke’s aphasia

speech interview. The patient (P) answers fluently, but the
clinician (C) makes interjections.

split these into a train (70 %) and test (30 %) group, based on
which sub data set they belong to. Basing the split on the sub
data set affiliation prevents us from training and validating
based on the same therapists. This results in 25,414 utter-
ances in the training set and 20,498 utterances in the test set
(The discrepancy to our 70:30 quota is caused by different
sizes of the sub data sets, and the test data set containing
larger sub datasets). We subsequently extracted a feature
vector for each utterance, using openSMILE (Eyben et al.]
2013)) with the IS13_ComParkE feature set (Schuller et al.
2013). These feature vectors, along with the speaker labels
extracted from the transcripts, have been used to train a Gra-
dient Boosting classifier to discriminate between clinician
and patient. The Gradient Boosting was implemented using
scikit-learn 0.19.1 (Pedregosa et al., 2011). The resulting
model was evaluated by calculating the mean accuracy of its
predictions on the test set, resulting in a mean unweighted
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Figure 5: Transcript based aphasia syndrome classification
pipeline

accuracy of 83.27 % (u = 50%). This is too inaccurate for
usage in our system. Additionally, this does not provide
any segmentation, but requires a segmentation beforehand,
possibly lowering its accuracy even further if the provided
segmentation (using an automatic diarization system for pre-
processing) is not as accurate as the segmentation of the
AphasiaBank.

4.3. Transcripts

After the therapy session is completed, the clinician starts to
transcribe the recording of the spontaneous speech session.
The speech is transcribed as it is, including interjections like
“hmm”, or speech and articulation errors. Furthermore, the
clinician might also include remarks like “patient is laugh-
ing” or “patient is thinking” in curly brackets within the
patient portion of the transcript. The clinician also tran-
scribes her own speech. In our data, each transcript is then
an alternating list of texts, tagged with either patient or clini-
cian. In Table[l] the amount of utterances available for each
of the four standard aphasia syndromes is stated.

5. Early Results and Discussion

For an initial analysis of the data and due to the challenges
with speaker diarization we described in [.2] we started
with the goal of predicting the aphasia syndrome type based
on the transcripts by configuring a baseline setup. Therefore,
a subset of the data has been partitioned into four groups
of 30 AAT tests each, such that each group contains pa-
tients of one of the four most prevalent aphasia syndroms:
global aphasia, Broca’s aphasia, Wernicke’s aphasia and
amnesic aphasia. From each of the four groups representing
syndroms, we used 70% for training and 30% for testing
purposes. In order to classify the aphasia syndrome based
on transcripts, we converted each patient utterance into a
list of words and trained a word2vec (Mikolov et al., 2013)
model. We chose a window size of three and required each
word in the word2vec space to occur at least two times in
our utterances. To train the word2vec model, we use our
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Figure 6: Categorical accuracy of an LSTM estimating the
aphasia syndrome. Best performance from epoch 25 to 60,
with peak accuracy of 44.3% (u = 25%).

training data set described above, along with phrases from
patients which we did not include in the training and test
sets before, for instance because they had an inconclusive
aphasia syndrome diagnosis. In order to train our aphasia
syndrome classifier, we subsequently transform all training
utterances into lists of 20-dimensional word vectors, padding
them to a length of 30 vectors per utterance. Each of these
lists has an assigned aphasia syndrome label and is used to
train a pipeline of an long short-term memory (LSTM) layer,
followed by a densely connected layer featuring a softmax
activation function. This is implemented using Keras (Chol{
let and others, 2015). The LSTM has been configured to
use a 30 % chance of unit dropout and 40 % chance of unit
dropout in the recurrent state, while using 80 memory units.
We only use a single layer LSTM configuration, as the goal
is to provide a baseline for further developments. The model
uses an categorical cross entropy loss function and estimates
a four dimensional normalized tensor, with each dimension
representing one aphasia syndrome. The result is evaluated
based on categorical accuracy, which is the percentage of
correctly predicted classes, with the “predicted class” being
the greatest element of the softmax output tensor. The eval-
uation has been performed on the test set described above.
Plots of accuracy and loss attributes over 200 epochs are de-
picted in Figures[6|and [7] while the classification pipeline is
depicted in Figure[5] The increasing loss function indicates
that the model overfits around 100 epochs. Further increas-
ing loss values did not show any meaningful improvements,
indicating that more training samples might be the better
way to cope with this issue. In summary, the baseline setup
shows both the potential and the challenges with clinical
aphasia data. While it was possible to perform an initial
classification, the usage in clinical scenarios depends on
higher accuracies and further improvements (see Section

7).
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drome.

6. Conclusion

In this paper, we presented challenges and early results in
the automatic processing of real-world clinical aphasia data.
We described our data collection of aphasia spanning many
years of diagnosis sessions in the university hospital. Each
data point in our collection consists of speech recording data,
transcripts and rich meta data. The speech data consists of
patient clinician interviews and has to be segmented before
it can be utilized. We therefore reported on challenges with
speaker diarization. The meta data was extracted from diag-
nosis sheets and contains aphasia syndrome and severeness
classification, as well as scores and evaluations of the spon-
taneous speech section. The scores contain six different
categories, which, among others grade the prosody, syntax
and phonematic structure of the patient speech. We aim
to use this data collection to build and automatic aphasia
test, based on the German AAT. Such a system would both
benefit clinicians and patients. E. g., patients, many of them
mobility impaired stroke victims, could have a continuous
spontaneous speech evaluation system at home without the
need to go to the hospital every time. In our work, we
started with building a baseline syndrome classifier based
on an LSTM using the transcript portion of the dataset.

7. Future Work

Our initial implementation of an automatic aphasia syn-
drome categorizer shows the challenge of the task of usage
in a real world scenario. As higher accuracies will be needed
before such systems can be used in everyday clinical set-
tings, in the future, we aim to increase its performance in
several ways, such as performing a majority vote based on
the categorization of all utterances of a patient or additional
layers within the classification model. These layers might
use information like word histograms and utterance length
distributions. Additionally, it might be possible to constrain
the decision space for certain combinations of meta infor-
mation. The latter could be an especially valuable approach
when estimating speech impairment factors like automatic

speech, as the AAT limits the possible ratings by measur-
able factors like misplaced words. This would help to cope
with the lack of training data, since a first attempt in us-
ing an LSTM to do this expressed signs of underfitting and
thus yielded a low accuracy. Regarding the segmentation of
speech data, we plan to further investigate the possibility of
using an automatic speaker diarization system, or at least ap-
plying a semi-automatic approach. We think that it might be
helpful to include clues about one speaker having impaired
speech in the process, i. e., analogous to the paralinguistic
approach presented by (Zhang et al., 2017). Finally, we
plan to include the speech section as well in order to build
a model able to draw from both speech and transcript data.
Furthermore, we plan to use the UKA AAT DB (including
speech, transcript and rating data) for a challenge, e.g. Com-
ParE at Interspeech, and release it to the research community
afterwards. The DB will then include distinct portions for
training, development and testing.
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