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Abstract—We present an approach to detect speech im-
pairments from video of people with aphasia, a neurological
condition that affects the ability to comprehend and produce
speech. To counter inherent privacy issues, we propose a cross-
media approach using only visual facial features to detect
speech properties without listening to the audio content of
speech. Our method uses facial landmark detections to measure
facial motion over time. We show how to detect speech and
pause instances based on temporal mouth shape analysis and
identify repeating mouth patterns using a dynamic warping
mechanism. We relate our developed features for pause fre-
quency, mouth pattern repetitions, and pattern variety to actual
symptoms of people with aphasia in the AphasiaBank dataset.
Our evaluation shows that our developed features are able
to reliably differentiate dysfluent speech production of people
with aphasia from those without aphasia with an accuracy
of 0.86. A combination of these handcrafted features and
further statistical measures on talking and repetition improves
classification performance to an accuracy of 0.88.

Keywords-facial features; speech diagnosis; medical assess-
ment

I. INTRODUCTION

Speech impairments are common symptoms for people

with neurological conditions. Aphasia is one such neurolog-

ical condition that affects a person’s ability to understand or

produce speech. Aphasia typically results from a stroke or

other brain injury and can improve or worsen over time [1].

The degree and types of speech impairments in aphasia span

a broad continuum, ranging from slightly dysfluent speech

to severe limitations that only allow for a few words or

utterances.
Assessing the abilities of people with aphasia is usually

performed manually in direct interviews with doctors or

therapists. The assessment itself can range from a broad

classification of a patient’s capabilities to a detailed analysis

of symptoms based on interview transcripts [1]. Especially

in the latter case, the time effort is enormous and may

not even represent the person’s abilities outside the clinical

environment. Thus, there is an opportunity for automated

assessment tools to track speech abilities more frequently

over time and outside the clinical environment, enabling

more effective tailoring of therapy for people with aphasia.

Figure 1. Example of our two best performing temporal features. In
combination, they separate non-fluent aphasia patients from control group
members in most cases.

Integrating assessment tools with everyday video calls (e.g.

FaceTime) can provide more continuous and representa-

tive evaluations of speech impairments as they improve or

worsen over time. A straightforward approach might focus

on audio information to infer speech capabilities; however,

it would require the system to listen in on what people

actually say, which can raise concerns about privacy and

confidentiality. In this paper, we propose a cross-media

approach that only uses visual information to infer speech-

related properties, while maintaining the person’s need for

privacy of their semantic speech content. This can increase

the acceptance of automatic evaluation systems with pos-

sible applications in diagnosis and therapy [2], continuous

assessment in video conferences or specific discourses with

doctors, self-evaluation over time, or large scale medical

studies.

Our approach is based on an initial registration of facial

landmarks of people when they are talking. This is common

for traditional facial vision tasks like face [3], emotion [4],

[5] or gaze [6] recognition. Whereas the recognition targets

for these tasks are typically related to visual facial prop-

erties, we instead specifically attempt to recognize speech

properties. The task closest to our approach is visual speech
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Figure 2. Overview of our basic features: (a) Video frame example from the AphasiaBank [1] dataset with detected facial landmarks. (b) Temporal mouth
dissimilarity for different temporal windows. (c) Vertical mouth opening measure. (d) Combined talk score and the derived detection of talking intervals
and pauses

recognition, with recent successes in automatic lip reading

using DNNs [7]. Because we want to avoid extracting

information on the semantic level, we focus on temporal

features of facial motion to infer properties of speech pat-

terns instead of the actual speech content. Our contributions

are the development of temporal features for speech and

pause detection, detection of repeating facial patterns, and

the measure of overall facial pattern variety. We relate these

features to actual speech-related symptoms of people with

aphasia such as dysfluency, repetitive speech, and the use of

a limited vocabulary. We report classification results using

these features to distinguish different groups of people with

aphasia from control group participants without aphasia,

based on five minutes of interview recordings taken from

the AphasiaBank [1] dataset.

II. METHOD

The basic idea of our approach is to analyze mouth

shapes and mouth motion and to develop features related to

actual speech properties. We use point detections outlining

the mouth of a person in a video and compare the mouth

shape over time. This reveals speaking turns as well as

short pauses within speaking turns. Additionally, we group

temporally sequential mouth shapes into mouth patterns

and compare different patterns with each other to identify

repeating patterns during talking. Finally, we measure the

variety in mouth motion for a person by comparing it to

a small vocabulary of observed patterns. Next, we describe

each feature in detail.

A. Basic Features

The video material consists of recordings of participants

(i.e. people with aphasia and a control group without apha-

sia) during interviews with fixed protocols. Even though the

participant’s face is either the only or the most prominent

face in the recording, the camera viewpoint can vary from

frontal to profile views of the participant’s face. Our analysis

begins with the registration of 2D landmarks on the person’s

face. We use a CNN-based approach following [8] to obtain

a 70-point model for the characteristic facial points (see

Figure 2a). Because many of the 70 facial points do not

meaningfully change when the person is speaking, most of

our analysis focuses on the mouth with its M = 20 points

outlining the lips. We refer to this set of 2D mouth points

at a specific point in time t in a video as:

mt =

(
x1 x2 · · · xM

y1 y2 · · · yM

)
. (1)

All video material is recorded at 30 frames per second, so

we specify any point in time t by its frame index.

Our analysis of mouth configurations and their motion

over time is based on a temporal similarity measure of a

person’s 2D mouth points and certain direct measurements

of the mouth’s opening. To compare how much the shape

of a mouth changes over time, we measure the difference

of two mouth configurations mt1 and mt2 based on their

point-wise quadratic difference ‖mt1−mt2‖22. Any changes

in the mouth configuration over time result from (a) body

movement, (b) head movement or (c) inner-facial motion. To

account only for the latter, we allow an arbitrary scaling s,

2D rotation Rθ and translation t to map one of the compared

mouth configurations as close as possible onto the other. We

then use the remaining difference as the actual difference

in shape. This is similar to the approach in [9] to capture

body pose differences. In contrast to [4], we directly map

the two mouth configurations we want to compare without

an intermediate mapping onto a frontal template view of

a mouth. Since we are later interested in the difference

of temporally nearby mouth configurations in a video, we

avoid the additional error induced by the intermediate face

frontalization step [10]. Our approach is closely related to

shape analysis with Procrustes methods [10], [11] and leads
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to a mouth dissimilarity measure msim with:

msim (mt1,mt2) = min
s,θ,t

‖mt1 − sRθmt2 + t‖22 . (2)

msim is inherently dependent on the scale of its first

operand mt1. We therefore use the symmetric and scale

invariant msimnorm with:

msimnorm (mt1,mt2) =

msim (mt1,mt2)

smt1

+
msim (mt2,mt1)

smt2

, (3)

where smt is the average distance of any point in mt from

its center and acts as an estimate of its scale.

We can now use msimnorm to measure inner-facial motion

by comparing mouth configurations of the same person in

a temporal window Δt. Because it is unclear which choice

of Δt will result in the most informative measure, we use

a collection of different temporal windows w. This leads to

our final temporal self-dissimilarity measure for the mouth

dw(t), defined as:

dw(t) =
∑

Δt∈w
msimnorm (mt,mt+Δt) . (4)

Our experiments revealed that short temporal windows

w = {2, 3 . . . , 10} are best suited to capture mouth changes

during talking (see Figure 2b for examples).

B. Talking Detection

In order to infer different properties of someone’s speech

capabilities, the first step is to detect when someone is

talking. (Certainly, talking can be easily inferred from the

audio channel, but we restrict our approach to only visual to

preserve privacy.) Since talking results in mouth movement,

periods of talking reveal themselves as areas of high activity

(or dissimilarity) in dw(t). Note that dw(t) not only captures

mouth movement during talking but also (1) jitter in the

point detections or missdetections and (2) changes due to

out-of-plane rotations of the mouth, e.g. when nodding or

shaking the head. To account for the former, we only con-

sider time instances where all facial landmarks are detected

with sufficient confidence. Registration errors from the latter

effect are filtered out based on the observation that talking

can only occur when the mouth is open at some point in the

window. Thus, we measure the vertical distance between

points on the upper and lower lips. Let o(t) denote this

vertical opening of the inner mouth, normalized by the scale

of the complete face (analogous to the mouth scale smt
).

Since o(t) is changing frequently during talking, we apply a

closing operation to smooth over gaps of size up to Δt = 50
with a combined minimum and maximum filter and obtain

omax(t) with:

omax(t) = min

(
max

t′∈[t−Δt,t]
o(t), max

t′∈[t,t+Δt]
o(t)

)
. (5)

Figure 3. Detected pauses for (a) a person with aphasia and (b) a control
group member.

Figure 2c depicts the result of this operation on a sample

video. It fills gaps of a briefly closed mouth during talking

while retaining sharp boundaries for longer periods of non-

talking. Thus, a sufficiently high value of omax(t) is a

precondition for talking to be detected. Head motion without

actual talking (or mouth opening) is filtered out, e.g. when a

person is simply nodding. The final talk score is now given

by talk(t) = dw(t) · omax(t), where dw(t) and omax(t)
are maximum-normalized to [0, 1]. Finally, we apply a talk

threshold τtalk for a hard {0, 1} assignment, remove very

short talking intervals, and join closely adjacent talking

intervals that are separated only by very short gaps. This

represents our final talk instance detection (see Figure 2d).

C. Pause Frequency

One decisive symptom of impaired speech for people with

aphasia is dysfluent speech, manifested as unintended pauses

during talking. Developing a measure for pauses can lead

to a direct measure of fluency. To detect pauses, we can

again use the talk score talk(t), apply a more restrictive

threshold τpause, and register all areas of inactivity during

the previously detected talk instances in Section II-B. Fig-

ure 2d shows an example for such pauses. Despite intended

pauses being detected as well, we expect that the overall

pause frequency is still related to a person’s speech fluency.

Figure 3 shows a qualitative example of the difference in

pause frequency for a person with aphasia and a control

group member.

D. Repetitive Patterns

Apart from dysfluency, one of the more noticeable speech

symptoms of aphasia patients are frequent repetitions of

utterances, words, or sentence fragments. These repetitions

often occur when forming the subsequent word or when

trying to correct the last word. We aim to find repetitions in

the mouth motion that are related to speech repetitions. Even

though repeating mouth motion may not be necessarily a

direct indicator for repetition on the semantic level, statistics

of visual repetition can still offer insight into repetition

behaviors.
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Figure 4. Repeating mouth patterns for (a) a person with aphasia and (b) a control group member. Different colors encode different mouth motion patterns.
Pattern repetitions use the same color.

For our approach to detect visual repetitions of mouth

motion, we define a pattern of mouth motion of length l
around time t as pt = (mt−�l/2�, . . . ,mt, . . . ,mt+�l/2�).
We compare two observed patterns of arbitrary length using

Dynamic Time Warping [12], [13]: We transform pt1 into

pt2 by either directly transforming a mouth configuration in

pt1 into the respective configuration in pt2, or by allowing

insertions or deletions in pt1. The cost for direct transfor-

mation operations is given by msimnorm between the two

transformed mouth configurations, maximum-normalized to

[0, 1]. The more dissimilar both configurations are, the

higher the cost. Insertion and deletion operations are always

assigned the maximum cost of 1. Since the same mouth

motion is not always performed at the same speed, temporal

warping using insertions and deletions enables us to match

similar patterns of different lengths. The overall pattern

match cost is the cost sum of the optimal sequence of

transformation operations.

To find possible repetitions, we first extract reference

patterns around locally unique mouth configurations, i.e.

maxima in dw(t). We then search for matching patterns in

the direct vicinity (±5s) that have a match cost below a

certain threshold τmatch. Figure 4 shows examples for pattern

matches for a person with aphasia that frequently repeats

single words and a person without aphasia. Even though

repeating patterns are found in both cases, the person with

aphasia shows few but direct repetitions compared to the

many highly interleaved repetitions for the person without

aphasia. This hints that direct repetitions separated by no

(or only a few) other patterns may be a good indicator for

direct word repetitions. We therefore count the occurrences

of direct repetitions and normalize by the total talking time

to obtain a measure of (visual) repetitions per second.

E. Visual Vocabulary of Mouth Patterns

Instead of looking where in time certain patterns occur or

repeat, we can also collect patterns over a complete video

and assess their variety. This directly relates to the overall

variety in mouth motion or expression and therefore - to a

lesser extent - to the actual variety in speech. We would

clearly expect a person capable of only expressing a few

words or utterances to show less variety in mouth motion

than an unimpaired person with a normal vocabulary.
To obtain such a measure of variety, we build a visual

vocabulary of mouth patterns for each person by collecting a

fixed number of patterns throughout a video and aggregating

them using clustering with a fixed number of clusters. Only

patterns that repeat at least once are selected. If not enough

such patterns can be extracted, we select the missing ones

randomly from the video. The representatives of all cluster

centers form the vocabulary. For our approach we use k-

medoids clustering with a predefined vocabulary size k. For

a small k, we want to measure how well the vocabulary

represents the complete variety of mouth motion of the per-

son. We split the talking periods in the video into fixed-sized

blocks of mouth motion. The blocks have the same length as

the patterns in the vocabulary. Each block is now assigned

the vocabulary element with the lowest pattern match cost

from Section II-D. The idea is to reconstruct the complete

mouth motion during talking by only concatenating the best

fitting vocabulary elements. From this reconstruction, we

measure the match (or reconstruction) cost between each

block and its assigned vocabulary pattern and calculate the

total reconstruction cost as the block-wise average. With

limited variety in mouth motion, a small vocabulary suffices

to describe the overall motion sufficiently well and leads to

a good reconstruction. We compute the reconstruction cost

for k ∈ {5, 10, . . . , 50} and use its mean as the final score

of mouth motion variety.

III. EVALUATION

We evaluate our developed features on the Aphasia-
Bank [1] dataset of video recordings and transcripts of

interviews with people with aphasia (APH) and control

group participants (CTR). The aphasia patients are further

classified based on their speech capabilities into fluent (FL)

and non-fluent (NFL) speakers. While non-fluent patients

show major impairments in physical speech production, flu-

ent patients are usually able to talk more or less fluently but
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the semantic content is often incorrect or incomprehensible.

We removed a few videos of insufficient video quality and

control group members below the age of 35 - an age group

not represented in the dataset of people with aphasia. This

resulted in a dataset of 163 CTR, 99 NFL and 111 FL videos.

Because videos vary in length, we extract five minutes of

direct discourse between the interviewer and the participants

from each video for a fair comparison.

To evaluate the effectiveness of our developed features,

we construct three binary classification tasks to discriminate

the different groups of participants: CTR vs. NFL, FL vs.

NFL and CTR vs. FL. Parameters for all speech features

are optimized individually on a training set consisting of

45 CTR, 30 NFL, and 30 FL videos. The remaining videos

are used as a test set for evaluation. Each classification task

has a different ratio of positive to negative examples. In

order to keep results across the different tasks comparable,

we evaluate classification results using a balanced accuracy
(ACC) measure. This is simply the mean accuracy on both

classes, weighted by the fraction of examples in each class.

A. Individual Features

Table I shows the results when using each individual

feature to directly classify participants on a video level. Each

feature is treated as a likelihood score that a participant

belongs to one class or the other. For the CTR vs. NFL

task, i.e. discriminating normal and notably dysfluent speech,

our inferred pause frequency measure performs best with an

ACC of 0.86. This is not surprising, as pauses are inherently

related to fluency of speech. The repetition frequency of

mouth patterns reveals itself as not very informative with an

ACC of only 0.64. To explain this result, Figure 5a shows

the relationship between the detected pattern repetition fre-

quency and the actual word repetition frequency derived

from the video transcripts. It is obvious that there is no

real correlation between both properties. Simply counting

the number of directly repeating mouth patterns is therefore

not suitable as an indicator for actual repetition in speech.

As the third feature, the mouth pattern variety based on

the concept of a visual vocabulary performs better, with an

ACC of 0.72. Figure 5b shows that the visual vocabulary

is able to identify parts of the aphasia patients with actual

limited speech vocabulary by variety scores in the range

[0.7, 0.8], which are hardly observed for the control group.

However, it is not well-suited as a single discriminating

feature to distinguish the two participant groups on its own,

but in combination with other features (see Figure 1), it still

contains viable information.

The relative ordering of feature performance stays the

same for the FL vs. NFL task, but the overall performance

drops significantly with only 0.69 ACC for the pause fre-

quency. This is somewhat to be expected as the ground

truth separation into fluent and non-fluent aphasia patients

is based on a subjective impression of the interviewer. Both

Figure 5. Relationship of developed features and speech properties:
(a) Detected mouth pattern repetitions and actual word repetitions from
the transcript. (b) Mouth pattern variety and actual vocabulary size. Only
the latter shows informativeness.

groups still share symptoms of varying degrees and are

therefore much more difficult to distinguish.

For the final task CTR vs. FL, performance slightly

recovers again. Most notably, the pause frequency and the

mouth pattern variety perform very similar with 0.74 and

0.70 ACC each. Since highly non-fluent participants are not

present in this task, the pause frequency as a direct measure

is not necessarily the most informative feature.

B. Feature Combination

Different aphasia patients may vary in the types and

degrees of speech symptoms, so a single feature extracted

from the interview videos might not be optimal in differ-

entiating different types of aphasia in general. We therefore

additionally examine if the combination of features within

an arbitrary classifier outperforms the classification using

each feature separately. To this end we use a random forest

classifier on our developed features and apply it to the same

three classification tasks. We choose its hyper-parameters

based on the training set and report the results from a 5-fold

cross-validation on the test set in Table I. With the exception

of the CTR vs FL task, the performance of the classifier

seems to be capped by the best performing single feature.

Since randomized classifiers in general benefit from a large

set of features to draw from, the performance using only

the three specifically designed and parameterized features is

not necessarily optimal. However, many other features can

be extracted from our concepts of talk and pause detection,

pattern repetition and pattern variety. We repeat the experi-

ment by including further statistical measures which are not

directly related to specific symptoms. Our choice includes

the average length of talk intervals and pauses as well as

the average duration between pattern repetitions. Extending

the feature set leads to gains in all three classification tasks

compared to the single feature performance, with an ACC of

up to 0.88. Therefore, adding more statistical features built
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Pause Freq. Repetition Freq. Mouth Pattern Variety Feature Combination Extended Features

CTR vs. NFL 0.86 0.64 0.72 0.86 0.88
FL vs. NFL 0.69 0.59 0.60 0.68 0.69
CTR vs. FL 0.74 0.64 0.70 0.76 0.76

Table I
BALANCED ACCURACY ON THE THREE CLASSIFICATION TASKS USING INDIVIDUAL FEATURES, FEATURE COMBINATIONS WITH A RANDOM FOREST

CLASSIFIER, AND AN EXTENDED FEATURE SET WITH ADDITIONAL TALK AND REPETITION STATISTICS.

on our concepts of talk detection and repeating patterns leads

to an increase in discriminative power, but at the cost of los-

ing the semantic interpretation of the individually developed

features. Thus, computational approaches such as ours may

be able to identify subtle patterns in behaviors related to

aphasia that traditional therapists may not normally be able

to detect.

IV. CONCLUSION

We presented a cross-media approach to infer speech

impairments of people with aphasia based on visual facial

features alone, without the need to listen to what they say.

Based on detections of facial landmarks, we applied tech-

niques from shape analysis and sequence warping to develop

methods for detecting periods of talking and pauses as well

as repetitions in facial temporal patterns. We additionally

measured the variety of facial patterns based on a visual

pattern vocabulary. Our evaluation showed that measures

of pause frequency and the variety of mouth patterns are

useful in differentiating people with and without non-fluent

aphasia. Combining individual features together, along with

additional statistics on repetition and talking, resulted in

an overall balanced accuracy of 0.88 for distinguishing

people with and without non-fluent aphasia. In the future,

we aim to include body movement such as head motion

and hand gestures into our analysis to detect gesturing as

a replacement for missing speech capabilities, as well as,

expanding to other neurological conditions such as dementia.
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