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ABSTRACT

With 4.5 million hours of English speech from 10 different sources
across 120 countries and models of up to 10 billion parameters, we
explore the frontiers of scale for automatic speech recognition. We
propose data selection techniques to efficiently scale training data to
find the most valuable samples in massive datasets. To efficiently
scale model sizes, we leverage various optimizations such as sparse
transducer loss and model sharding. By training 1-10B parameter
universal English ASR models, we push the limits of speech recog-
nition performance across many domains. Furthermore, our models
learn powerful speech representations with zero and few-shot ca-
pabilities on novel domains and styles of speech, exceeding previ-
ous results across multiple in-house and public benchmarks. For
speakers with disorders due to brain damage, our best zero-shot and
few-shot models achieve 22% and 60% relative improvement on the
AphasiaBank test set, respectively, while realizing the best perfor-
mance on public social media videos. Furthermore, the same univer-
sal model reaches equivalent performance with 500x less in-domain
data on the SPGISpeech financial-domain dataset.

Index Terms— large-scale, semi-supervised learning, transfer
learning

1. INTRODUCTION

Using massive datasets to train neural models with ever-increasing
sizes has spurred rapid progress in many fields of machine learn-
ing, such as natural language processing [1} 2], computer vision (3],
and automatic speech recognition (ASR) [4} 5} 16]. The size of the
training dataset and the number of model parameters are mutual bot-
tlenecks and must be scaled in tandem [7]]. In this paper, we explore
and overcome the limitations of these two dimensions in ASR.

The abundance of publicly available text on the internet enabled
the large-scale training of language representation models of up to
175B parameters on hundreds of billions of tokens [1]. On the other
hand, supervised ASR datasets and models have been orders of mag-
nitude smaller, and only recently, billion parameter ASR models are
used with semi-/self-supervised methods [6} 18 9] or through pooling
together data from many sources [4].

This paper pushes these ideas to the extreme by pooling data
from 10 different sources and employing semi-supervised training
through pseudo-labeling. Our data contains 4.5 million hours of
speech, most notably 4 million hours of unlabelled public social me-
dia videos on Facebook, uploaded from 120 countries and containing
a wide variety of content and acoustic conditions. We propose data
selection strategies to emphasize data diversity while reducing the
computation cost of working with the whole dataset.

*Equal contribution

Data Source Transcriber Hours Hours Aft?r
Augmentation

LibriSpeech [18]] Human 960 5760
Common Voice [19] Human 500 3000

Libri-Light [20] Model 60000 360000
Fisher [21]] Human 1960 11760
Assistant* Human 12600 41400
Conversational* Human 780 6600
Calling Names TTS 640 3840
Dictation* Model 880 7920
Portal Human 1350 8100

Video Human 18000 108000
Portal Model 4800 28800

Video Model 4009400 4009400

Table 1. Our 4.5M hour dataset consists of 10 sources. Data sources
marked with * are collected through third-party vendors. Those
marked with } are collected from Facebook products.

Following prior work on scaling Transformer models [[1} 10} [L1]],
we scale the encoder of an E2E VGG-transformer transducer model
[12, [13] up to 10B parameters. We leverage several techniques to
train our transducer models efficiently on GPUs: FairScale model
sharding [14], sparse alignment restricted transducer loss [15],
mixed-precision training [16]], and large batch sizes [[17].

Prior work [4] 16l 9] 22} 23] explored mixing many datasets to
train large multi-domain speech models but was limited to under
100K total hours and 1B model parameters. [24] analyzed scaling
trends for acoustic models but did not go beyond 10K hours and
100M parameters. With a focus on multi-lingual models, [S] scaled
ASR models up to 10B parameters but only demonstrated less than
0.5% relative improvement compared to 1B parameter models. This
paper expands these efforts to show that English speech has suffi-
cient difficulty to merit scaling to 10B parameters and shares a recipe
to train models at this scale efficiently.

While videos on social media are abundant, other scenarios
severely lack audio resources. For example, AphasiaBank [25], the
largest source for aphasic speech recognition, contains under 100
hours of audio data. By pushing the limits of scale for ASR, we can
improve ASR not just for domains with large datasets but also low
resource domains like aphasic speech. Pre-training large models on
a universal dataset shows impressive zero-shot 22% WER improve-
ment on AphasiaBank. Transfer to other novel domains with zero,
limited, and large-scale fine-tuning conditions exceed previously
reported results, e.g., SPGISpeech [26] and an in-house dataset of
long-form videos. We find scaling model size to 1B parameters to
significantly improve zero and few-shot performance, even in low
resource conditions.



2. DATA SCALING

2.1. Multi-domain Data Sources

Our first method of constructing a large speech recognition dataset is
to pool data from various sources. Table[I]lists out the data sources
used. The data can be grouped into four categories:

* Publicly released datasets: LibriSpeech [18], Common Voice
[19], Libri-Light [20], and Fisher [21]].

e In-house datasets collected from third-party vendors via
crowd-sourced volunteers responding to artificial prompts
with mobile devices. The content varies from voice assistant
commands to a simulation of conversations between people.

* In-house datasets from Facebook products: public Facebook
videos and voice commands to Portal. Videos used are from
120 different countries.

» Data generated from an in-house TTS model to increase the
diversity of sentence patterns in our training data.

All in-house datasets are de-identified with no personally identi-
fiable information (PII). Depending on the source, the data was fur-
ther augmented with various distortion methods: speed perturbation
[27], simulated reverberation, and randomly sampled additive back-
ground noise extracted from public Facebook videos.

‘We retain punctuation and casing from in-house datasets, which
introduces inconsistency with some public datasets but allows the fi-
nal model to output richer information. For evaluation, we use hand-
transcribed data from the LibriSpeech, Portal, Video, and Conversa-
tional data sources, ranging from 3K-15K utterances with no overlap
with training. We split up Video into “Standard” and “Challenging”
subsets, where the “Challenging” subset contains videos with more
noise and music.

2.2. Semi-supervised Labeling

The key to our data scaling strategy is leveraging 4 million hours
of unlabelled audio with pseudo-labeling. The majority of our data
in Table [T] comes from public Facebook videos labeled by a 1B pa-
rameter model trained on a smaller supervised and semi-supervised
dataset from similar sources. We use a language identification model
to select videos predicted to be English. These videos came from the
same source as the supervised videos but may contain more chal-
lenging data such as singing and foreign speech.

2.3. Data Selection

4M hours of pseudo-labels present many challenges, including noisy
labels and audio, viral videos dominating most of the content, and
infrastructure requirements to work with such a massive dataset.
Data selection is a common technique to address these issues [28].
We propose the following strategies for data selection to bring the
dataset down to 1.3M hours only:

* Words per Second: Remove pseudo-labels with fewer than
0.5 words per seconds, which correlates with noisy music
videos or foreign language.

* Confidence Score: Remove data with a bottom 20% confi-
dence score to remove low confidence pseudo-labels.

* Model Disagreement: Re-decode the unlabeled data with an
80M parameter streaming model. We compute the edit dis-
tance between the two hypotheses to filter out data within the
bottom and top 20% of disagreement to avoid too easy and
too noisy utterances.

Parameters Hidden Size Layers Attention Heads
100M 512 36 8
1B 1152 60 16
10B 3072 90 48

Table 2. Hyper-parameters for our Transformer encoders.

» Segmentation + Alignment: A hybrid model [29] is used for
the alignment restricted loss [15] to segment data into 10s
segments and filter out empty segments or ones that fail to
align.

* Rare Data: Compute the cumulative word frequency distri-
bution based on the supervised data and a consider a word
to be rare if it is not in the top 90% most frequent words.
Video segments with W words and R rare words are pre-
served if R >= min(2,0.25 x W). We keep all videos not
uploaded from United States, Great Britain, Canada, or Aus-
tralia to maintain data diversity.

3. MODEL SCALING

3.1. Model Architecture

Our model architecture is a non-streamable full-context Transformer-
Transducer [12] with a VGG-Transformer encoder [13]], a 19M pa-
rameter 2-layer LSTM predictor, and a 4M parameter feed-forward
joiner. We focus on increasing the size of the Transformer encoder,
which showed the most promise in initial experiments. Three en-
coders of 100M, 1B, and 10B parameters are constructed by varying
the number of transformer layers and hidden dimensions. FFN
dimension is always set to 4 times the hidden dimension. 3 VGG
blocks are applied at the encoder input [[13]] for an inter-frame length
of 80ms. We use 0.1 dropout in all Transformer blocks. Details for
each model size are listed in Table 2] We also experimented with
Mixture of Experts encoders [30]] of up to 40B parameters. We did
not see improvements, hence, we leave its exploration for future
work.

3.2. Model Convergence

Due to convergence stability challenges in large mixed-precision
models [31] with gradients or activations overflowing we recom-
mend the following strategies:

* Pre-layernorm [32] avoids gradient explosion and enables
better gradient flow.

* Scale the weight of the second linear layer in the FFN block
by \/%, where n is the number of Transformer blocks [[11]].

* Set (3 in the Adam optimizer to 0.98 to avoid network acti-
vations overflowing beyond the FP16’s range [2].

3.3. Model Training Efficiency

Training transducer models with a billion or more parameters with
distributed data parallel training is prohibitively slow. We leverage
multiple optimizations to make it feasible to train such models in a
reasonable amount of time. Large batch sizes can speed up training
by improving the efficiency of GPU kernels and reducing the num-
ber of inter-GPU communication rounds required [17]. We use a
global batch size of 23 hours. To fit such a large batch size into GPU
memory, we leverage the following optimizations:
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Fig. 1. WER results of a single universal model as we vary model size (100M, 1B, and 10B parameters) and dataset size (13K, 130K, and
1.3M hours). LibriSpeech results are reported on the test-other set. Increasing model size from 1B to 10B parameters only helps in the largest
data setting: we see an average relative WER change of 7.32%, 2.19%, and -4.03% on 13K, 130K, and 1.3M hours respectively.

e Alignment Restricted Transducer Loss [[15] utilizes word level
alignments to reduce the memory required for transducer loss
from O(BxT xU x D) to O(Bx (T+U x (bi+0b:)) x D),
where B is the batch size, 1" the number of timesteps, U the
number of target symbols, D the vocabulary size, and b; and
b, are the left and right buffers. We set b; = 15 and b, = 15.

 Fully Sharded Data-Parallel [14]] shards model weights, gra-
dients, and optimizer states to reduce the memory consump-
tion of large models. We only shard optimizer state and gra-
dients to reduce the communication overhead.

Activation Checkpointing [33] reduces activation memory by
recomputing them in the backward pass.

* Mixed Precision Training [16] utilizes GPU Tensor Cores for
more efficient compute and reduces the GPU memory and
communication bandwidth required.

4. EXPERIMENTS

4.1. Experiment Details

We use 80-D log Mel features computed every 10ms with a window
of 25ms. SpecAugment [34] with the LibriSpeech Double policy is
applied to the input features. We train our models for 200,000 up-
dates, linearly increasing the learning rate to 4e % in the first 20,000
updates and exponentially decaying by 1e =2 over the remaining up-
dates. We use Adam with 81 = 0.9,82 = 0.98,¢ = 1le © and
normalize the global gradient norm to 2. The vocabulary is set to
4095 BPE units. All training is done in Fairseq [35]. Our largest
10B parameter model is trained with 128 A100 GPUs for 25 days
and needs 8.41 * 10 PFLOPs for the encoder.

4.2. Impact of Scaling

To analyze the interaction between data and model size, we train a
universal model with three different sizes on three datasets of 13K
hours, 130K hours, and 1.3M hours. Results are plotted in Figure [T]
We find that there is a benefit when scaling dataset size and model
size together. At 1.3M hours, WER reduction is correlated with the
model size where the 10B model obtains on average a 4.03% rela-
tive WER reduction compared to the 1B model and 20.00% relative
reduction compared to the 100M model. Similarly, WER reduction
is correlated with dataset size at 10B parameters. Increasing 130K
hours to 1.3M hours improves the average relative WER of the 100M
model by 0.01%, the 1B model by 1.67%, and the 10B model by
8.46%. These results suggest that scaling the model and dataset to-
gether is the key to further improvement.

Model Size Data Size (h) WER Rare WER
10B 3.2M 7.21 11.00
10B 1.3M 7.16 10.55
1B 3.2M 7.56 11.53
1B 1.3M 7.46 10.88

Table 3. Effect of data selection with Rare Data and Model Dis-
agreement after 100k updates on average WER and Rare WER.

4.3. Data Selection

Applying all data selection methods described in Section 2 reduced
the original data from 4.5M hours to 1.3M hours. Without applying
Rare Data and Model Disagreement filtering on the pseudo-labels,
the dataset is about 3.2M hours. The goal of these two techniques
is to reduce cost by removing unnecessary data while improving
performance on the long tail. To measure the impact of these two
methods, we introduce the rare WER metric, which measures WER
only on words outside the top 90% cumulative word frequency dis-
tribution — computed on the supervised data. These words are often
proper nouns and more important to the meaning of the utterance
than common words like articles. Table [3] shows that reducing the
data by 1.9M hours not only maintains the overall WER but also im-
proves rare WER by 4-6% relative. Although we previously found
increasing dataset size beneficial, these findings suggest that quality
is more important than quantity: it is crucial to pick diverse samples
when scaling up dataset size.

4.4. Zero-shot and Few-shot ASR

To understand how our models generalize to novel domains, we per-
form zero-shot and few-shot experiments on three datasets: Aphasi-
aBank [25], SPGISpeech [26], and an in-house long-form videos
dataset. We conduct few-shot learning by fine-tuning the universal
models from Figure [I] further on each respective dataset. Our mod-
els achieve strong zero-shot performance and demonstrate impres-
sive few-shot performance by exceeding baseline results by 16% to
60% relative (Table EI) In all cases, few-shot learning on top of our
universal model is significantly superior to training on the relevant
domain from scratch, enabling low-resource domains to enjoy the
benefits of large models.

Our experiments also show that zero-shot and few-shot learning
benefit from scaling from 100M to 1B parameters. The 10B results,
however, are less consistent and points to overfitting during fine-
tuning. We highlight our results below.



Dataset AphasiaBank Long-Form Video SPGISpeech
Overall Fold1 Short Long 5000h 100h 10h 1h 10m
Prior Work 37.37 23] - - - 2.3 [26] - - - -
100M 53.39 51.72 13.52 8.94 2.6(2.5) 18.5(18.5) - - -
From Scratch 1B 54.32 52.51  13.56 9.01 2.6(2.5) 17.1(17.0) - - -
10B 56.69 54.81 15.30 10.14 2.4(2.4) 27.9(27.8) - - -
100M 30.29 29.63  12.99 9.17 7.1(4.9)
Universal 1B 29.06 28.55 11.88 8.72 6.5(4.4)
10B 30.05 29.33 1143 9.33 6.4(4.3)
100M 16.44 15.59  12.68 8.45 2.0(2.0) 2.7(2.6) 3.029) 3.53B4) 4239
+ Fine-tuning 1B 14.83 1398 11.18 745 1.8(1.8) 2.2(2.2) 24(2.3) 272.6) 3934
10B 15.76 15.11  11.09 8.21 1.8(1.7) 2.2(2.1) 24(2.4) 29(2.8) 4.034)

Table 4. Results on novel domains. We benchmark 3 types of models: universal (trained on the general 4.5M hour dataset), from scratch
(trained on the in-domain dataset), and fine-tuned (fine-tune the universal model on the in-domain dataset). Fine-tuning is significantly better
than training from scratch and enables 1B+ models on lower resource domains. We also report WER computed with an in-house reference

. . . * .
normalization in parentheses. Private test we don’t have access to.

4.4.1. AphasiaBank

Aphasia is an acquired speech-language disorder due to damages to
portions of the brain, most commonly resulting from a stroke. It im-
pairs verbal communication and makes it difficult for ASR systems
to understand aphasic speech [36} 137]. Transcribed aphasic speech
is also scarce: a large-scale aphasic speech dataset like AphasiaBank
[25]] only contains about 100 hours of recorded interactions between
clinicians and persons with aphasia (PWAs). These challenges mo-
tivate leveraging transfer learning from a large, diverse dataset like
ours. We hope that high-quality ASR for aphasic speech will al-
low PWAs to enjoy the benefits of ASR technologies while enabling
medical analyses that rely on ASR [37].

We follow the same normalization, data folds, and data splits
from [36]. Results aggregated across all four folds are shown in
Table ] When trained from scratch, large E2E models cannot
achieve WER better than 50%. On the other hand, universal and
fine-tuned models perform quite well; the fine-tuned 1B parameter
model achieves a 60% relative WER improvement compared to the
baseline hybrid model in [37] and a 72% relative WER improved
compared to our own baseline, both of which were trained from
scratch on AphasiaBank. These results indicate that few-shot learn-
ing benefits low resource domains like aphasic speech. More work
needs to be done, however, to avoid overfitting for the 10B model.

4.4.2. SPGISpeech

SPGISpeech [26] contains 5,000 hours of financial audio from cor-
porate earnings calls. We use the norm setting to analyze general-
ization to a more formal setting with financial jargon. The test set is
private, so we split half of the 100h validation to create our own test
set. While our results are not strictly comparable, the test sets are
drawn from the same distribution.

Table ] demonstrates that universal models perform somewhat
reasonably but still struggle relative to [26]. Many errors are from
jargon like “GAAP” or the mismatch in transcription conventions:
1/4 of the errors are from inserting “uh” and “um.” When using our
in-house reference normalization, which avoids counting fillers as
errors, the WER drops by about 30% relative. After fine-tuning, our
10B model enjoys a 23% relative improvement compared to [26]
without any extra normalization.

We create smaller training sets with as little as 10 minutes of

data to stress test low-resource adaptation. Our models display pow-
erful adaptation capabilities: only 10 hours of fine-tuning data is
needed to match the training performance from scratch on the orig-
inal 500x larger dataset. Furthermore, few-shot learning improves
WER by 20% relative using only 10 minutes of data. The 1B model
performs the best while the 10B model overfits in ultra low-resource
conditions. In contrast, the 1B model’s extra capacity improves gen-
eralization from 5K hours to 1 hour; the improvement relative to
100M parameters steadily increases from 13% to 23%, suggesting a
sweet spot for fine-tuning towards low resource domains.

4.4.3. Long-Form Video

We use 18000 hours of human-labeled long-form videos from so-
cial media to test the ability of our models to generalize to different
lengths. These videos were in the original 4.5M hour dataset but
with different lengths. We segment the training data to 45s instead
of 10s and do not segment evaluation data. The evaluation videos
are at most 5 minutes in length. Tabled]breaks down the results into
short videos (less than 45s) and long videos (more than 45s).

Within the universal models, the 10B model does the best on
short videos but the worst on long videos, which suggests that al-
though our huge dataset may be diverse in some areas, length diver-
sity is still a blind spot for the large models. Fine-tuning alleviates
this problem, but the 1B model still has a 9% lower WER on long
videos. This observation highlights the need for including length
diversity when building large-scale datasets or regularization tech-
niques to avoid overfitting to specific lengths [38].

5. CONCLUSION

In this work, we pushed the boundaries of large-scale speech recog-
nition. We proposed an efficient recipe to train models of up to 10B
parameters on 4.5M hours of audio. These large models demon-
strated powerful zero-shot and few-shot learning capabilities across
several domains, even with limited in-domain data. We also iden-
tified issues related to generalization and over-fitting in our current
paradigm for scaling to 10B parameters. For future work, we plan
to explore better low-resource transfer learning techniques for huge
models. We will also investigate ways to improve data diversity and
training objectives when working with massive datasets.
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