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Purpose: Item response theory (IRT) is a modern psychometric framework with 
several advantageous properties as compared with classical test theory. IRT has 
been successfully used to model performance on anomia tests in individuals with 
aphasia; however, all efforts to date have focused on noun production accuracy. 
The purpose of this study is to evaluate whether the Verb Naming Test (VNT), a 
prominent test of action naming, can be successfully modeled under IRT and eval-
uate its reliability. 
Method: We used responses on the VNT from 107 individuals with chronic apha-
sia from AphasiaBank. Unidimensionality and local independence, two assump-
tions prerequisite to IRT modeling, were evaluated using factor analysis and Yen’s 
Q3 statistic (Yen, 1984), respectively. The assumption of equal discrimination 
among test items was evaluated statistically via nested model comparisons and 
practically by using correlations of resulting IRT-derived scores. Finally, internal 
consistency, marginal and empirical reliability, and conditional reliability were 
evaluated. 
Results: The VNT was found to be sufficiently unidimensional with the majority of 
item pairs demonstrating adequate local independence. An IRT model in which 
item discriminations are constrained to be equal demonstrated fit equivalent to a 
model in which unique discrimination parameters were estimated for each item. All 
forms of reliability were strong across the majority of IRT ability estimates. 
Conclusions: Modeling the VNT using IRT is feasible, yielding ability estimates 
that are both informative and reliable. Future efforts are needed to quantify the 
validity of the VNT under IRT and determine the extent to which it measures the 
same construct as other anomia tests. 
Supplemental Material: https://doi.org/10.23641/asha.22329235 
.

Anomia, the impaired ability to access and retrieve 
words, is a hallmark symptom of aphasia (Goodglass & 
Wingfield, 1997; Kohn & Goodglass, 1985; Nickels, 2002)  
Although much research has centered on the production of 
nouns (e.g., Dell et al., 1997; Schwartz et al., 2006), verb 
production can be similarly disrupted in anomia (Berndt, 
Haendiges, et al., 1997; Berndt, Mitchum, et al., 1997; 
Nickels, 2014). Few options exist, however, for assessing 
verb production, and those that do are restricted by the 
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psychometric framework within which they have been devel-
oped. The purpose of this study was to evaluate whether the 
Verb Naming Test (VNT), a relatively common subtest of 
verb production from the Northwestern Assessment of Verbs 
and Sentences (NAVS; Cho-Reyes & Thompson, 2012), can 
be adequately and reliably modeled using a modern psycho-
metric approach, thereby creating a blueprint for future test 
and scale development for the assessment of verbs. 

Verb Production in Aphasia 

Models of spoken language production (e.g., Dell 
et al., 1997; Levelt et al., 1999) posit that successful word 
and sentence production depend on both retrieval of target
right © 2023 American Speech-Language-Hearing Association 1
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lemmas (lexical processing) and selection of appropriate 
morphosyntactic frames for those lemmas (morphosyntactic 
processing). Notably, different word classes are thought to 
differentially engage one component of processing over the 
other. Content words (e.g., nouns, verbs, adjectives, 
adverbs) are traditionally thought to require greater recruit-
ment of lexical processes, whereas function words (e.g., pro-
nouns, articles) engage morphosyntactic processing to a 
greater degree. Verbs, which vary in both their morphologi-
cal structure and semantic richness, can be understood as 
existing at the nexus of these two linguistic processes, play-
ing a central role in sentence production (Chang et al., 
2006; Gordon & Dell, 2003). 

In aphasia, differential impairments in component 
processes of spoken language production are frequently 
observed, and these impairments may selectively affect 
certain word classes. Specifically, individuals with a pri-
mary morphosyntactic processing deficit (i.e., agramma-
tism) present as more impaired in the retrieval of function 
words relative to content words, whereas the opposite is 
observed in those with a primary lexical processing deficit 
(i.e., anomia; e.g., Bradley et al., 1980; Goodglass & 
Kaplan, 1983; Segalowitz & Lane, 2000). A similar divi-
sion has also been observed in the production of verbs rel-
ative to other content word classes, specifically nouns. 
Here, individuals presenting with agrammatism perform 
worse at retrieving verbs relative to nouns, whereas those 
with anomia experience the reverse (e.g., Bates et al., 
1991; Caramazza & Hillis, 1991; Laiacona & Caramazza, 
2004; Miceli et al., 1984). 

Some have suggested that such double dissociations 
are artifacts of study design (Bastiaanse & Jonkers, 1998) 
or analytic technique (Alyahya et al., 2018). Regardless, 
there is also evidence that verb impairments may be espe-
cially prominent in aphasia. As many as 75% of individ-
uals with aphasia experience greater verb than noun nam-
ing impairments (Mätzig et al., 2009), and verb produc-
tion impairments are more strongly correlated with func-
tional communication impairments than noun production 
impairments are (Rofes et al., 2015). The relative promi-
nence of verb impairments may reflect verbs’ position at 
the nexus of lexical and morphosyntactic processing: 
Impairments in either process will negatively impact verb 
production. The high prevalence and functional impact of 
verb impairments have led to the development of multiple 
treatment programs designed to target verb production 
deficits specifically (Edmonds et al., 2009; Loverso et al., 
1979; Thompson & Shapiro, 2005; Wambaugh & Fergu-
son, 2007). Thus, the assessment of verbs specifically is of 
value not only for the accumulation of evidence on the 
nature of aphasia and the cognitive architecture of lan-
guage but also for the development of efficacious interven-
tions for remediating language deficits in aphasia. 
•2 Journal of Speech, Language, and Hearing Research 1–22
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Current Assessment of Verb Production 

Despite the need for rigorous measurement of verb 
production in aphasia, relatively few assessment tools have 
been developed or validated, at least compared to noun 
production batteries. One relatively prominent VNT is the 
22-item VNT (Cho-Reyes & Thompson). Similar to con-
frontation naming tests for nouns, examinees are required 
to label a target with one action word in response to pic-
torial scenes. Items were selected specifically to vary in 
terms of their syntactic complexity (argument structure or 
valence) while holding lexical–semantic and phonological 
processing demands constant (see Cho-Reyes & Thompson, 
2012, for further details). In their initial validation study, 
they found the VNT to possess strong psychometric proper-
ties (i.e., interrater reliability, discriminant validity) within a 
classical test theory (CTT) framework, thus making it an 
appropriate measure for further psychometric evaluation. 
With respect to the feasibility of this endeavor, the VNT is 
part of the AphasiaBank protocol (MacWhinney et al., 
2011) and VNT data are readily accessible for research 
purposes. 

The CTT framework, however, is limited by several 
prominent factors (Embretson & Reise, 2000). First, each 
test provides scores that reflect an individual’s ability com-
pared to the standardization sample. As a result, scores 
cannot be directly compared across tests without assuming 
that equivalent samples were used during their develop-
ment. This hampers researchers’ and clinicians’ ability to 
compare the performance of individuals assessed using dif-
ferent tools intended to measure the same construct, even 
when the items used in these assessment tools overlap. 
Furthermore, tests developed under CTT typically ignore 
that measurement error varies as a function of ability 
level, often resulting in invalid confidence intervals (CIs). 
This has implications for determining the probability of 
true change as a function of spontaneous recovery or 
response to treatment. Third, available tools often need to 
be administered in their entirety to obtain relevant diag-
nostic information, and no standardized CTT-based 
approach currently exists for tailoring the selection of test 
items to an individual’s ability level, thereby minimizing 
testing burden. Even when discontinuation rules are used 
to adapt the test’s length (e.g., Boston Naming Test 
[BNT]; Kaplan et al., 2001), analytic and simulation-
based studies have demonstrated that this seemingly intui-
tive approach can be complex with a propensity to gener-
ate biased ability estimates (von Davier et al., 2019). 
Finally, test–retest effects can potentially influence results 
when the same test is administered again at a later time. 
Thus, repeated administration of the same stimuli reduces 
the ability to measure treatment progress independent of 
confounding test variables.
2023, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Item Response Theory 

An alternative to CTT is item response theory (IRT; 
Lord, 1980; Lord & Novick, 1968). In IRT, statistical 
models are used to describe how test takers’ underlying 
latent trait, that is, ability level, determines observed patterns 
of behavior. IRT formalizes the notion that a latent (un-
observed) trait of interest, such as naming ability, can be esti-
mated via a statistical model based on test responses that are 
directly observed. In its simplest form, an IRT model seeks 
to explain the probability of a correct response on a given 
item on a test as a function of the two quantities: (a) the 
item’s difficulty and (b) the patient’s ability level. 

For example, the one-parameter logistic (1-PL) IRT 
model defines the probability that an examinee responds 
correctly to an item (observed behavior), given an item’s 
difficulty and a person’s ability level (both estimated by 
the model). The 1-PL model can be represented mathe-
matically as 

P xi = 1|θj
（ ） = eα θj−δi( )  

1+ eα θj−δi( )  , (1) 

where P xi = 1|θj
（ ）

is the probability that response x on item 
i by examinee j is correct given their latent trait level θj, α is 
the item discrimination parameter, and δi is item i’s difficulty 
parameter. Item difficulty describes the location of an item 
on the ability continuum and can be understood to reflect 
the relative ease or challenge of producing a correct response 
on a given item. Within the context of IRT, item difficulty 
parameters typically range from −4 to 4 and the higher an 
item’s difficulty, the harder the item is. The discrimination 
parameter, α, describes how well an item can differentiate 
between individuals at different ability levels and can be also 
conceptualized as the magnitude of the nonlinear relation-
ship between an item and the latent trait.1 Discrimination 
can theoretically vary from −∞ to +∞ but typically ranges 
from 0 to 2. According to Baker (2001), discrimination can 
be classified as none, low, moderate, high, and  very high 
based on the following ranges: 0 is none, 0.01–0.34 is very 
low, 0.35–0.64 is low, 0.65–1.34 is moderate, 1.35–1.69 is 
high, and  > 1.7  is  very high. The 1-PL model stipulates that 
all of the items are equally discriminating. That is, the 1-PL 
model assumes that all items of the same difficulty are 
equally informative for estimating a person’s ability level 
1 Relatedly, the IRT discrimination parameter bears a direct mathe-
matical relationship to a factor loading estimated in the context of a 
common factor model and is also conceptually similar to a regression 
weight in the context of an observed-variable regression model. It 
indexes the amount of variance in the observed response variable 
accounted for by the latent trait. For interpretations of the discrimi-
nation parameter in the context of diffusion and race models, see the 
work of Tuerlinckx and De Boeck (2005). 
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(i.e., α is not indexed for item). The latent trait, θj, is a sto-
chastic estimate of the construct measured by the test for the 
jth examinee. In other words, θj represents the degree of the 
underlying trait a person possesses relative to the difficulty 
of the items in the test. Even though θj is not directly 
observed, it can be estimated based on the test taker’s 
observed responses on items of known difficulty. In the con-
text of confrontation picture naming tests, ability and any 
numerical estimates associated with it are used to refer to the 
degree of naming impairment or anomia severity. For an 
introduction to IRT concepts and applications in the context 
of speech-language pathology, interested readers are directed 
to the works of Baylor et al. (2011) and Fergadiotis et al. 
(2021). For a more general and complete presentation, see the 
works of de Ayala (2013) and Embretson and Reise (2000). 

IRT ability estimates are meaningful only to the 
extent that they meet certain psychometric assumptions. 
First, commonly used IRT models assume that the item 
set is unidimensional, meaning that all item responses are 
essentially a function of a single common underlying trait. 
Specifically, the observed variance of items can be decom-
posed into the sum of two parts: the variance accounted 
for by the underlying trait across all items, and any resid-
ual variance that is unique to each item and includes idio-
syncratic variance and random error. To the extent that 
unidimensionality is violated when an IRT model assumes 
it, there is a negative effect on the accuracy of model 
parameters, as well as the ability estimates and their preci-
sion (Crişan et al., 2017). Importantly, interpretation of 
ability estimates becomes increasingly more challenging as 
the severity of model assumption violations increases, 
making it less and less clear what meaning one should 
assign to a given score. A second related assumption is 
that of local independence. Typically, responses on a test 
are correlated because the probability of responding cor-
rectly to the items is determined by a common factor that 
is assumed to be the person’s ability level. However, when 
the effect of the common factor is partialed out (i.e., when 
responses are conditioned on ability level), all responses 
should be independent. Local independence can be violated 
in the presence of multidimensionality, as discussed previ-
ously, for example, when groups of items are based on a 
common stimulus, such as when several items refer to the 
same reading comprehension passage (Wainer et al., 2007) 
or when there are other sources of systematic influence not 
accounted for by the IRT model applied to the data (Levy 
et al., 2009). Finally, another assumption concerns the spe-
cific form of the model. As described earlier, the 1-PL model 
assumes that all of the items are equally discriminating, that 
is, that each item is related to the underlying trait with equal 
strength and, thus, equally informative for estimating ability. 
However, this can be an untenable assumption in many 
cases, and if an inappropriate model is used with the data,
Fergadiotis et al.: IRT Modeling of the VNT 3
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not only can model parameters be distorted, but also the 
interpretation of a person’s ability score becomes challeng-
ing. The two-parameter logistic (2-PL) model relaxes this 
assumption, allowing discrimination to vary across items. 
However, this complicates the model fitting process as the 
2-PL model also requires larger sample sizes for stable esti-
mation of item discrimination parameters (de Ayala, 2013). 
Varying discrimination parameters also complicate inter-
pretation of the model because they can create situations in 
which items change their ordinal ranking of difficulty 
depending on the ability of the test taker. 

When key assumptions of the chosen IRT model are 
well approximated, IRT provides a rigorous framework 
for addressing the CTT limitations discussed above. First, 
IRT defines a latent trait scale that is in theory indepen-
dent of both the particular items that are administered 
and the item calibration sample. Therefore, when tests are 
calibrated using IRT methods, ability estimates based on 
different collections of items (e.g., different tests or different 
subsets of items from the same test) can be directly compared 
irrespective of the particular characteristics of the items and 
their standardization samples. A second benefit of IRT 
models is that they represent the precision of score estimates 
conditional on individual ability level (Embretson & Reise, 
2000). This feature permits one to model the fact that an easy 
test given to a severely impaired patient provides a more pre-
cise and informative score estimate than the same test given 
to a mildly impaired patient. In contrast, CTT assumes that 
the precision of the total observed score is expressed as a sin-
gle average value that is dependent on the variability in the 
sample at hand. Finally, an important advantage of IRT-
based ability estimates is that the resultant IRT scores behave 
similarly to interval-type data, where the distance between 
each unit of measurement is equal (Embretson & Reise, 
2000). Thus, a change of 1 (in terms of the log odds of a cor-
rect response) on the latent trait scale has the same meaning 
regardless of where on the scale it occurs. 

IRT Modeling of Aphasia Tests 

While IRT is not new and dates back to the 1960s, 
it has seen relatively little use in the field of aphasiology 
and speech-language pathology more broadly, especially 
considering the number of assessment tools currently cir-
culating in the field. Furthermore, as Baylor et al. (2011) 
discussed, even when IRT has been used, in some cases “. . .  
this work has either tended to be technical in orientation 
with limited impact on clinical practice or has not capitalized 
on some of the particular advantages of IRT” (p. 244). 
Early examples of the application of IRT to instruments rel-
evant to aphasiologists include the Token Test (Willmes, 
1981), the Test of Adolescent/Adult Word Finding (German, 
1990), and the Aachen Aphasia Test (Willmes, 2003). More 
•4 Journal of Speech, Language, and Hearing Research 1–22
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recently, IRT methods have been applied to the Western 
Aphasia Battery–Revised (Hula et al., 2010; Kertesz, 2007), 
the BNT (del Toro et al., 2011; Kaplan et al., 2001), and the 
Dutch Naming Test (Alons et al., 2022). 

Perhaps the most productive application of IRT to 
enhance the psychometric properties of tests used has been 
to the development of IRT-based patient-reported out-
come measures and the assessment of anomia. With 
respect to the former, modern psychometric approaches 
have been used to develop the Aphasia Communication 
Outcome Measure (Hula et al., 2015; Hula & Doyle, 2021), 
the Communicative Participation Item Bank (Baylor et al., 
2021), and the Communication Confidence Rating Scale 
for Aphasia (Babbitt et al., 2011). With respect to the 
assessment of word retrieval, which is the primary focus of 
this study, the application of IRT techniques to improve 
clinical utility has been demonstrated in a series of recent 
studies. Specifically, capitalizing on the advantages of IRT, 
our research group has focused on applying IRT to refine 
the Philadelphia Naming Test (PNT; Roach et al., 1996), a 
confrontation naming test of noun production that is com-
monly used in research settings. 

Our initial research efforts focused on fitting an IRT 
model to the PNT and evaluating its psychometric proper-
ties. After meeting the assumptions of unidimensionality 
and local independence, we found the PNT to demon-
strate adequate fit to both 1-PL and 2-PL models, 
although the 1-PL model was ultimately selected for parsi-
mony (Fergadiotis et al., 2015). Moreover, a regression 
analysis of three salient lexical variables (word length, age 
of acquisition, and frequency) showed all to be significant 
predictors of item difficulty parameters of the PNT, thus 
supporting the validity of the PNT under IRT (Fergadiotis, 
Swiderski, & Hula, 2019). 

After establishing the utility of IRT as a psychomet-
ric framework for the PNT, we extended this work by 
developing a computerized adaptive test (CAT) version of 
the PNT (Fergadiotis, Hula, et al., 2019; Hula et al., 2015, 
2020). The CAT version, or PNT-CAT, was designed to 
present items tailored to an individual’s ability level, esti-
mated from their previous responses. Our initial simulation 
study revealed that a 30-item PNT-CAT form yields equal 
or greater accuracy and precision of naming ability estimates 
than existing static short forms (Walker & Schwartz, 2012), 
showing the potential to reduce PNT test length, and thereby 
decrease test burden and administration time, without 
sacrificing measurement precision. We then validated these 
findings by comparing agreement in ability estimates from 
the 30-item PNT-CAT form with the original 175-item PNT 
using empirical data collected from 47 participants with 
aphasia. Here, agreement between the two test versions was 
almost perfect, as indicated by high correlation (r = .95,  95%
2023, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



CI [0.92, 0.97]) with negligible bias, low variable and total 
error, and pairwise score differences not exceeding the Type 
I error rate (Fergadiotis, Hula, et al., 2019). 

More recently, we compared two alternate PNT-
CAT short forms of the PNT (30-item, variable length) 
with nonoverlapping content to evaluate potential differ-
ences in the effectiveness of various test lengths. As 
before, we found the two test versions were highly corre-
lated (r = .89) with error variance that was low and in 
the range predicted by the IRT measurement model, sug-
gesting that both PNT-CAT short forms can sufficiently 
assess anomia severity. Overall, the collective results of 
these findings across studies suggest that the PNT-CAT 
is a reliable and efficient system that can reduce admin-
istration time and provide accurate information of nam-
ing deficits. 
The Value of Test Validation Under IRT 

Quantifying the psychometric properties of existing 
aphasia tests under modern frameworks such as IRT has 
numerous advantages, as discussed in the preceding para-
graphs. Because of their stronger claim to interval status, 
more realistic modeling of measurement error, and sup-
port for CAT and other flexible approaches to test admin-
istration, IRT-based tests have great potential to improve 
clinical decision making. Maximizing the validity of test 
scores in turn increases the validity of the inferences and 
decisions based on them, including (a) determination of 
referral for speech-language pathology services, (b) selec-
tion of a treatment program, (c) quantification of prog-
ress over time, (d) justification of continued provision of 
care, or (e) tailoring of education to individuals with 
aphasia and their caregivers. In addition, rigorously vali-
dated test scores are critical to applied clinical research, 
where sensitive and precise measures are needed to deter-
mine the efficacy of interventions. Finally, rigorously vali-
dated measures are necessary for developing or refining 
theories about the neural and cognitive architecture of 
language. In the absence of psychometrically robust mea-
sures, clinical decision making becomes inherently more 
variable, and research findings, whether applied or mech-
anistic, become more challenging, if not impossible, to 
interpret. 

This Study 

Given prior successful efforts at modeling the PNT 
under an IRT framework, coupled with the need to fur-
ther refine the psychometric properties of the VNT, the 
aim of this study was to evaluate the fit of the VNT to an 
appropriate IRT model and its reliability under IRT. Our 
research questions were as follows: (a) Do the assumptions 
Downloaded from: https://pubs.asha.org Carnegie Mellon University on 04/04/
of unidimensionality, conditional independence, and equal 
discrimination hold for the VNT, and (b) what is the 
VNT’s reliability under an IRT framework? 
Method 

Participants 

A sample of 107 individuals with aphasia with com-
plete audiovisual recordings of both the VNT and the 
short form of the BNT (Kaplan et al., 2001) was identified 
after screening all 296 participants within the Aphasia-
Bank database (MacWhinney et al., 2011; aphasia. 
talkbank.org) on March 6, 2019, as part of a larger 
research project. Inclusion criteria were as follows: (a) 
aphasia due to a single left-hemisphere stroke, where 
aphasia was operationally defined as an aphasia quotient 
of < 93.8 on the Western Aphasia Battery–Revised 
(WAB-R; Kertesz, 2007) or < 11 on the short form of the 
BNT; (b) right-handed native English speakers; (c) ade-
quate hearing and vision (aided or unaided) for testing 
purposes; and (d) no significant comorbid neurologic or 
psychiatric illness. Those with a concomitant clinical diag-
nosis of apraxia of speech or dysarthria were also included 
in the sample. Participant demographic and clinical data 
are shown in Table 1. A complete participant ID list is 
provided in Supplemental Material S1. 

Transcription and Scoring 

Participant responses on the VNT were phonemi-
cally transcribed by two research assistants at Portland 
State University in a pseudorandom order. Of note, par-
ticipant responses included in this VNT data set contained 
a large number of multiword responses. Thus, the research 
assistants transcribed everything the participant said/ 
gestured in response to the stimuli and used a set of tran-
scription coding conventions adopted from the CHAT 
manual (MacWhinney, 2000) meant to capture elements 
of nonfluent speech (see Appendix A for more informa-
tion). There were six missing data points all due to exam-
iner error during administration (i.e., test items were unin-
tentionally skipped). 

Phonemic transcriptions were broad, and variations 
in dialect were transcribed as they were heard using a 
phonemic notation developed by our laboratory for the 
purposes of use with a computer algorithm (Fergadiotis 
et al., 2016). Refer to Appendix A for our phoneme con-
ventions, a list of target phonemic transcriptions, and a 
list of transcription coding conventions. If a given produc-
tion strayed from our lab’s phonemic conventions, as was 
the case for some British dialects, that production was
Fergadiotis et al.: IRT Modeling of the VNT 5
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Table 1. Participant demographic and clinical characteristics. 

Characteristic Value 

Ethnicity 

African American 14% 

Asian 1% 

White 85% 

Education (years) 

M (SD) 14.97 (2.37) 

Min–max 11–20 

Missing 4% 

Age (years) 

M (SD) 61.52 (10.96) 

Min–max 39–85.7 

Missing 1% 

Years after aphasia onset 

M (SD) 5.44 (4.78) 

Min–max 0.25–25.75 

WAB-R AQ 

M (SD) 70.02 (17.08) 

Min–max 20.5–97.9 

Number of people with AQ < 93.8 104 

BNT-SF (% correct) 

M (SD) 6.97 (4.37) 

Min–max 0–15 

Number of people with score < 11 80 

VNT (% correct) 

M (SD) 14.44 (6.48) 

Min–max 0–22 

Note. WAB-R = Western Aphasia Battery–Revised (Kertesz, 2007); 
AQ = aphasia quotient; BNT-SF = Boston Naming Test–Short Form 
(Kaplan et al., 2001); VNT = Verb Naming Test (Cho-Reyes & 
Thompson, 2012). 
converted into Standard American English and tran-
scribed in accordance with our conventions. Disagree-
ments in transcription between the two research assistants 
were resolved by a licensed speech-language pathologist in 
a pseudorandom order. 

The data set was scored following the VNT scoring 
protocol with minor modifications to resolve ambiguity 
about which production to select and score in the midst of 
a multiword response (see Appendix B). First, the final 
main lexical verb produced as part of the first complete 
response was scored for accuracy. Second, auxiliary verbs, 
verbs produced as personal commentary, and/or copula 
“to-be” verbs functioning as main lexical verbs were syste-
matically ignored. Third, responses containing inflectional 
morphemes (e.g., –ing, –ed, –s) were recognized as correct 
verb approximations. Fourth, specific to and in accor-
dance with the VNT scoring rules, phonemic paraphasias 
that were phonologically similar to the target verb (i.e., 
≥ 50% of the phonemes were shared between the target 
and response) were scored as correct. Two research 
•6 Journal of Speech, Language, and Hearing Research 1–22
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assistants scored and error coded the first responses within 
10 s after stimulus presentation with or without a first ver-
bal prompt, and disagreements were then resolved by a 
licensed research speech-language pathologist. 

The VNT scoring protocol allows for an additional 
prompt from the test administrator and a second response 
following a first incorrect attempt. However, for the pur-
poses of this study, only a participant’s first response was 
considered for scoring and any subsequent response 
prompted by the test administrator, verbally or non-
verbally, was ignored. This decision was made because we 
noted considerable variability in VNT testing administra-
tion across multiple sites that had contributed data to 
AphasiaBank. For example, oftentimes an additional 
prompt was not provided after an incorrect first attempt 
due to examiner error. When prompts were provided, they 
often deviated from the manual and included additional 
syntactic and semantic information that could influence 
the subject’s word retrieval and responses. The examiner’s 
prompts and cues were therefore annotated using a coding 
convention (see Appendix A) developed by our lab for this 
study. Then approximately 20% of the data were pseudo-
randomly selected to quantify and further analyze the 
types of testing variability and their impact on the accuracy 
of first and second responses. Results revealed that when 
the examiner followed the VNT rules and provided an addi-
tional prompt following an incorrect first attempt, it did 
not significantly affect the likelihood of a correct second 
attempt (only 9.43% correct second attempts produced). 
Hence, the subject’s first responses were prioritized over 
second response transcriptions for resolution and scoring. 

Modeling Approach 

A graphical overview of our modeling approach can 
be found in the left-hand column of Figure 1. 

IRT Model Fit Assessment 
The following fit properties are well-established req-

uisites for applying traditional IRT modeling to any test 
(e.g., Baker, 2001; de Ayala, 2013; Embretson & Reise, 
2000; Lord & Novick, 1968; Wilson, 2005). In the case 
where assumptions are violated, multidimensional and 
multilevel IRT models may be appropriate for accounting 
for such data complexities (De Boek & Wilson, 2004). 
Notably, model assumption testing reveals important psy-
chometric properties about a test, which may or may not 
be aligned with the intent of the test developers’ and ini-
tial item design. 

Unidimensionality. Unidimensionality was initially 
assessed using the modified parallel analysis proposed by 
Drasgow and Lissak (1983), as implemented in the ltm R 
package (Rizopoulos, 2007). The primary analysis of
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Figure 1. A graphical overview of the item response theory (IRT) modeling approach and a summary of findings. VNT = Verb Naming Test; 
CTT = classical test theory. 
unidimensionality was then conducted within a categorical 
confirmatory factor analytic framework in Mplus (Version 
8; Muthén & Muthén, 2017). We specified and fit a uni-
dimensional model for which covariances among residual 
terms were constrained to be zero, and loadings and 
thresholds were freely estimated. This specification corre-
sponds to the 2-PL model, which assumes varying discrim-
ination across items. For identification purposes, the fac-
tor variance was set equal to one and all loadings were 
freely estimated. Given the categorical nature of the items, 
the weighted least squares mean- and variance-adjusted 
estimator was used (Li, 2016). To evaluate global model 
fit, we used the mean- and variance-adjusted χ2 statistic, the 
comparative fit index (CFI; Bentler, 1990), and the root-
mean-square error of approximation (RMSEA; Steiger & 
Lind, 1980). On the basis of published guidelines, good fit 
was indicated by a nonsignificant χ2 statistic, a CFI higher 
than .95, and an RMSEA value below 0.08 with the upper 
bound of the 95% CI below .10, although cutoffs are some-
what model dependent (Brown, 2015; Hu & Bentler, 1999; 
Kline, 2010). To assess for local strain in the models, modifi-
cation indices with values greater than 3.84 were considered. 
Local strain refers to examining and identifying the different 
parts of the model for unnecessary parameters that hurt fit 
or missing parameters that might improve local fit. For all 
analyses, missing data were accommodated using maximum 
likelihood under the assumption of data missing completely 
at random (Rubin, 1976). 
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Equal discrimination. To assess the assumption of 
equal discrimination across items, first, a 1-PL model and 
a 2-PL model were compared with a nested model differ-
ence test based on the weighted least squares mean- and 
variance-adjusted χ2 statistic using the DIFFTEST option 
in Mplus. A statistically significant result (i.e., p < .05) 
would suggest that the more restricted 1-PL model fits sig-
nificantly worse compared to the more flexible 2-PL 
model (Bentler, 2000). In addition, modification indices 
from Mplus associated with loadings (which correspond to 
discriminations) were considered. Modification indices in 
general reflect the amount by which the chi-square statistic 
could be reduced if a specific single parameter restriction 
were to be removed from the model (Sörbom, 1989). We 
also evaluated fit at the level of each individual item using 
item-level χ2 fit statistics using the ltm R package. Signifi-
cant χ2 values (i.e., p < .05) indicate items whose model 
implied functions may not be consistent with the data. 
Finally, the two models were evaluated in terms of their 
practical implications. Specifically, ability scores were gen-
erated under the two models and were compared in terms 
of their strength of association (Pearson product–moment 
correlation) and bias (average signed difference). 

Local independence. The assumption of local inde-
pendence was evaluated using Yen’s Q3 statistic (Yen, 
1984), which focuses on the magnitude of the residual cor-
relations of all possible pairwise item combinations. The
Fergadiotis et al.: IRT Modeling of the VNT 7

2023, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



critical value for flagging potentially problematic residual 
correlations was determined based on Christensen et al.’s 
approach (2017) according to which the critical value is 
set equal to .2 but adjusted by the average Q3 statistic 
across all pairwise residual correlations. Any residual cor-
relations with values greater than the critical value suggest 
that the corresponding pairs of items have something more 
in common than all of the items have in common with each 
other. To estimate Q3, the  sirt R package (Robitzsch, 2022) 
was used to first fit a 1-PL model and then calculate the sta-
tistics of interest (average Q3, pairwise  Q3s). 
Precision and Reliability 
Information and conditional standard error of mea-

surement. An item information function quantifies the 
degree to which observing a response on an item decreases 
the uncertainty in an ability estimate. When information 
is summed across items, the resulting curve captures how 
informative the test is as a whole conditional on ability. A 
test’s standard error of measurement (SEM) conditional 
on ability is inversely related to the square root of infor-
mation. The test information function and the conditional 
SEM curve were derived using the mirt package in R 
(Chalmers, 2012). 

Overall reliability: Categorical omega, and marginal 
and empirical reliability. First, the overall reliability attained 
by the VNT was estimated within a factor analytic frame-
work using categorical omega. Categorical omega was esti-
mated using the ci.reliability function from the MBESS R 
package (Kelley, 2022) based on Green and Yang (2009) 
using bias-corrected and accelerated bootstrap CI estimation 
(Kelley & Pornprasertmanit, 2016). 

Then, the overall reliability was investigated within 
an IRT framework using the mirt R package. Specifically, 
two indices were computed: marginal and empirical reli-
ability. The former calculates reliability through integra-
tion based on the model-implied test information functions 
and by assuming an a priori–selected probability density 
function of ability, which is in this case a standard normal 
distribution. On the other hand, the calculation of empiri-
cal reliability depends on computing the variance of abil-
ity estimates and their corresponding standards errors 
directly from the data. To the extent that the theoretical 
distribution of ability used in marginal reliability estima-
tion is correctly specified, and the model parameters are 
not biased, then the resulting estimate is a sufficient esti-
mator for overall reliability and in agreement with empiri-
cal reliability. 

Conditional reliability. Conditional reliability esti-
mates, which capture the precision of a test as a function of 
ability level, were extracted from the plot(type = “rxx”) 
function in mirt, and were replotted against the empirical 
•8 Journal of Speech, Language, and Hearing Research 1–22
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ability density to investigate the region of ability for which 
the VNT was maximally reliable. Expected a posteriori esti-
mation was used to derive the ability estimates of partici-
pants in the sample. 
Results 

IRT Model Fit Assessment 

A graphical overview summarizing our findings can 
be found in the right-hand column of Figure 1. 

Unidimensionality 
The initial exploratory analysis of unidimensionality 

using parallel analysis suggested that data were essentially 
unidimensional as the second eigenvalue in the observed 
data was equal to 1.58 and not substantially larger than 
the second eigenvalue of the permuted data sets (p = .90). 
A parallel analysis plot can be seen in Supplemental 
Material S2. 

When evaluated within a confirmatory factor ana-
lytic framework, the unidimensional model assuming vary-
ing loadings (equivalent to a 2-PL model) converged to a 
solution with no out-of-range parameter values and its 
global fit indices provided evidence of adequate model fit, 
χ2 (209, N = 107) = 215.287, p = .368; CFI = .994; 
RMSEA = 0.017, 90% CI [.00, .045]. Furthermore, no 
local model strain was noted (i.e., no modification indices 
with values > 3.84). The unidimensional model assuming 
equal loadings across items (corresponding to a 1-PL 
model) also converged to an admissible solution with evi-
dence of adequate global model fit, χ2 (230, N = 107) = 
254.147, p = .131; CFI = .976; RMSEA = 0.031, 90% CI 
[.00, .052]. Modification indices suggested some model 
strain associated with the assumption of equal loadings 
across items. Based on these findings, the assumption of 
unidimensionality that is central to the specification of 
both the 1-PL and the 2-PL models was judged adequate 
for the purpose of IRT modeling. The full solutions (i.e., 
difficulty and discrimination parameter estimates across 
models) can be seen in in the left panel of Table 2 (“diffi-
culty” and “discrimination”). 

Equal Discrimination 
Overall, global fit indices associated with the 1-PL, 

which assumes equal discrimination across items, sug-
gested adequate model fit. Model fit indices derived from 
Mplus suggested that model fit could improve by freeing 
the discrimination parameters of some items. However, as 
seen in the right panel of Table 2 (“item fit statistics”), the 
expected parameter change in each case was relatively 
small, with the exception of the item “give.” In addition,
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Table 2. Model parameters for 1-PL and 2-PL models and item fit indices based on the 1-PL model. 

Difficulty Discrimination Item fit statistics 

Item 1-PL 2-PL 1-PL 2-PL χ2 p MI EP 

Cut −0.26 −0.26 0.90 0.90 5.85 .76 

Bark −0.71 −0.62 0.90 1.17 6.66 .67 

Put 1.81 2.00 0.90 0.76 3.63 .93 

Send 0.41 0.41 0.90 0.91 11.70 .23 

Drive −0.52 −0.50 0.90 0.95 5.70 .77 

Wash −0.41 −0.45 0.90 0.76 14.18 .12 

Read 0.26 0.33 0.90 0.62 5.56 .78 5.24 0.61 

Laugh −1.09 −1.21 0.90 0.75 11.88 .22 

Watch 0.47 0.41 0.90 1.19 13.85 .13 

Give 0.71 1.13 0.90 0.47 30.78 >.01 13.30 0.46 

Swim −1.23 −1.31 0.90 0.81 4.54 .87 

Stir 0.43 0.50 0.90 0.70 5.66 .77 

Pinch −0.05 −0.06 0.90 0.75 11.74 .23 

Crawl 0.44 0.37 0.90 1.34 9.77 .37 5.95 1.38 

Deliver 0.90 1.13 0.90 0.63 10.82 .29 

Pour 0.50 0.43 0.90 1.26 8.51 .48 4.08 1.28 

Howl 0.41 0.33 0.90 1.52 8.52 .48 9.37 1.55 

Throw 0.71 0.76 0.90 0.80 4.22 .90 

Bite −0.09 −0.08 0.90 1.06 6.11 .73 

Shove 0.02 0.02 0.90 0.81 5.69 .77 

Tickle 0.37 0.41 0.90 0.78 6.53 .69 

Shave −0.58 −0.49 0.90 1.31 5.82 .76 4.66 1.32 

Note. PL = parameter logistic; MI = modification index; EP = expected parameter. 
item level χ2 tests estimated using the ltm package were 
nonsignificant with the exception again of the item “give” 
(χ2 = 30.78, p < .01). Finally, based on the DIFFTEST 
results from Mplus, despite the additional constraints 
imposed by the 1-PL model, model fit was not signifi-
cantly worse compared to the 2-PL model, χ2 (21, N = 
107) = 30.75, p = .07. 

In addition to the statistical analyses, we investigated 
the practical implications of selecting a 1-PL model versus a 
2-PL model. Ability estimates generated under the two 
models were highly correlated (r = .995,  p < .001).  Further-
more, negligible bias was noted, which was not significantly 
different than zero (bias < .0001). Visually, the strength of 
the linear association of the two sets of scores can be seen in 
Figure 2. In addition, consistent with the statistical analysis 
results, the data travel through the point where the axes 
intersect, which also suggests negligible bias. Ability esti-
mates and their standard errors can be seen in the Supple-
mental Material S3. 

Local Independence 
Two hundred thirty-one pairwise residual correla-

tions were estimated. The average Q3 statistic across all 
pairwise combinations was equal to .084, and the critical 
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value for comparing residual correlations was therefore .284. 
Across 231 pairwise combinations, only two pairs of items 
were flagged as potentially problematic. The Q3 statistic for 
the items “bite” – “shove” was equal to .36, and the Q3 sta-
tistic for the items “send” –  “wash” was equal to .31. 

Precision and Reliability 
Information and SEM. The test information function 

and the SEM curves can be seen in Figure 3. The test infor-
mation function (solid blue line) peaks near the average of 
the ability continuum (i.e., θ = 0) given the moderate diffi-
culty of the VNT items and gradually decreases for regions 
of more extreme ability levels. The SEM curve (dashed red 
line) mirrors the test information function, given that the for-
mer is calculated as the reciprocal of the square root of the 
latter. As it can be seen in the figure, the uncertainty of abil-
ity estimates is a function of the ability level and ability esti-
mates at the extreme of the ability distribution are associated 
with considerably more error. 

Overall reliability. The estimated categorical omega 
using bias-corrected and accelerated bootstrap CIs suggested 
high internal consistency (ω = .9095; 95% CI [.8011, .9105]). 
Similarly, marginal reliability was estimated to be equal to 
0.8721, whereas the empirical reliability was estimated to be
Fergadiotis et al.: IRT Modeling of the VNT 9

2023, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 2. Item response theory (IRT) abilities generated under the 1-PL model that assumes equal discrimination across items (x-axis) and 
the 2-PL model that assumes unique discrimination parameters for each item (y-axis). Despite the different parameterization of the models, 
ability estimates were very similar. 

Figure 4. Conditional reliability (red curve) plotted against the 
empirical distribution of the study sample (histogram). The trun-
cated density area indicates the ability scores that fall between the 
equal to 0.8758. Both marginal and empirical reliability esti-
mates were within the 95% CI of the categorical omega 
coefficient. 

Conditional reliability. The conditional reliability 
curve that can be seen in Figure 4 (red solid line) follows 
the pattern of the test information function. Considering 
the empirical distribution of ability estimates shown in the 
histogram, the level of reliability of the VNT is above .80 
for the vast majority participants in this study. 
•

Figure 3. Test information function (Iθ; blue solid curve) and the 
standard error of measurement curve (SEθ; dashed red curve) as a 
function of ability estimates (θ). 
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Discussion 

The purpose of this study was to evaluate the fit 
and reliability of the VNT under IRT. We found that the 
VNT met all necessary assumptions for IRT modeling 
and that a 1-PL model, where all test items are assumed
5th and 95th percentiles in the data. The blue dashed vertical lines 
indicate the range of scores for which ability estimates are calcu-
lated with conditional reliability above .80. The red dashed line 
indicates the conditional reliability equal to .80.
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to be equally discriminating, demonstrated satisfactory fit 
to the data. Moreover, precision and reliability were high, 
suggesting that the VNT is a psychometrically robust test 
for the assessment of action naming in aphasia.

IRT Model Fit Assessment 

Unidimensionality 
As with successful application of IRT models in 

similar domains (e.g., naming of objects; Fergadiotis 
et al., 2015), this set of analyses supports the claim that 
the VNT, and presumably other action naming tests, 
can be usefully modeled with a unidimensional structure. 
Satisfying the unidimensionality assumption provides 
preliminary evidence of construct validity, as both 
observed and IRT-derived test scores appear to vary sys-
tematically along a single continuum. This is a necessary 
but not sufficient condition for most clinical and research 
applications: rank ordering individuals based on their 
overall ability to produce verbs, relating performance on 
the VNT to predictive and explanatory variables includ-
ing group membership in clinical trials, and forming 
groups of individuals on the basis of their overall perfor-
mance. Furthermore, given that unidimensionality is a 
necessary assumption for estimating the most common 
IRT models, satisfying this assumption confers several 
practical advantages. Most notably, from a test develop-
ment perspective, it opens the door to applying a reper-
toire of robust and established psychometric tools to 
develop refined assessments, including efficient computer 
adaptive testing applications, in the future. 

However, adequate fit to a unidimensional model 
should not be interpreted as an endorsement of the idea that 
a unitary psychological construct underlies action naming. 
Regardless of domain, behavioral responses to test items 
never rely on a single underlying psychological process. We 
recognize that naming of actions and objects depends on the 
complex interaction of cognitive–linguistic and sensorimotor 
processes engaged during word retrieval. However, our 
results strongly suggest that it is reasonable to assume that 
the overall ability to access and retrieve verbs can be approx-
imated by a single quantity that reflects the relative ability of 
a person with aphasia to produce the target word. Note that 
this is the same assumption that is a prerequisite to claiming 
valid clinical inferences when using test-level scores (e.g., 
total score, percent correct) from a confrontation naming 
test without invoking the IRT machinery, a practice that is 
rarely questioned in practice given the utility of confronta-
tion naming tests. Furthermore, even models that claim to 
measure distinct underlying cognitive processes involved in 
naming yield combined scores that are almost indistinguish-
able from ability estimates generated by unidimensional IRT 
models (Walker et al., 2022). 
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Equal Discrimination 
Even though modification indices suggested that 

some discrimination parameters could be freed to improve 
model fit, the choice to proceed with a 1-PL model has 
several advantages. First, global indices suggested ade-
quate model fit for the 1-PL, which minimizes the need 
for post hoc model modifications. Furthermore, the nested 
model comparison suggested that the constraints imposed 
by the 1-PL (i.e., equal discrimination parameters across 
items) did not significantly worsen model fit. Finally, in 
terms of the practical implications of using a 1-PL versus 
a 2-PL to model the VNT, the high agreement of ability 
estimates generated by the two models suggests that any 
misspecification is relatively benign. On the other hand, 
model revision based on modification indices is a data-
driven approach, which makes it inherently susceptible to 
capitalizing on chance characteristics of the data. There-
fore, model revisions resulting from such an approach 
may fail to generalize to other samples or to the popula-
tion (MacCallum et al., 1992). Such risk increases with 
relatively small samples, as is the case in this study. Thus, 
while it is reasonable that the discrimination parameters 
of some items (such as “give”) should be freed to better 
match the patterns in the observed data, it would be opti-
mal to test this hypothesis in a larger independent sample 
of this population. 

However, while the use of the 1-PL might be adequate 
for modeling the VNT and generating ability estimates, 
investigating the performance of the two model specifica-
tions in the context of computer adaptive testing may further 
motivate the selection of a 2-PL. Specifically, in computer 
adaptive testing, an algorithm is typically used to select the 
next item to administer based on response patterns from pre-
viously administered items. To do so, commonly used algo-
rithms focus on the information curves of available items 
and select items for which information is maximized at the 
interim ability level that is calculated based on all of the pre-
vious responses. Given that the information function is a 
function of discrimination, it is plausible that refined esti-
mates of item discriminations may lead to improved perfor-
mance in terms of item selection. 

Local Independence 
The vast majority of pairwise combinations met the 

assumption of local independence, thereby justifying the use 
of standard IRT modeling procedures. A post hoc evalua-
tion of the two items pairs (i.e., “bite” –  “shove,” “send” –

“wash”) with residual correlations > .284 revealed no overt 
concerns about dependencies. Given that the correlations 
(i.e., .31 and .36, respectively) were marginally above the 
prespecified cutoff, it may be that any dependence is not sub-
stantial enough to yield biased estimates of precision (i.e., 
standard errors on ability that are unrealistically small). The
Fergadiotis et al.: IRT Modeling of the VNT 11
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results of the confirmatory factor analyses, where a unidi-
mensional model was shown to fit the data adequately with-
out specifying free correlations among items, further support 
the view that any item pair dependencies are likely negligi-
ble, as multidimensionality is a common cause for systematic 
residual pairwise item correlations. However, another cause 
may be the presence of distinct subgroups within our sample, 
where individuals within that group have response patterns 
that systematically differ from that of the reference group. If 
such subgroups were present, this would consequently lead 
to systematic subgroup differences in item parameter and 
ability estimates. Although outside the scope of this study, 
the quantification of systematic performance differences 
among subgroups is possible using differential item function-
ing and is a potential future direction for this line of work. 

Precision and Reliability 
The analyses based on the test information function, 

the SEM, overall reliability, and conditional reliability 
provide converging evidence that the VNT is a relatively 
reliable measure for the assessment of action naming. 

Here, each analysis sheds light to unique measure-
ment aspects and serves complementary purposes in 
understanding how the VNT test behaves, how it can be 
used, and how it can be further refined. First, the test 
information function forms the basis for the calculation of 
a test’s precision and is integral for the estimation of stan-
dard errors of measurement and, by extension, CIs. These 
metrics are well-described in the clinical literature and 
inherent to most standardized behavioral tests. As can be 
seen in Figure 3, IRT-based SEM depends on the ability 
level, and unlike the SEM typically derived from CTT, it 
is not constant. The least amount of error occurs where 
the test information function peaks with measurement 
error increasing progressively in regions that lack items of 
corresponding difficulty. The CI of an ability estimate can 
be calculated using the formula 95% CI(θ) = Ability(θ) ±
(1.96 × SEM(θ)). For example, using this formula, the 
95% CI for the lowest ability estimate in our sample (θ = 
−2.01), which most likely corresponds to the most severely 
impaired individual tested, is [−3.02, −1.01] on a scale 
that typically ranges from −4 to 4. On the other hand, the 
95% CI of an ability estimate of θ = 0.48, which is near 
the region for which the test information peaks, is almost 
half and equal to [−0.11, 1.07]. 

These findings establish the precision of the VNT 
but also illustrate its contingency on ability level. Put 
another way, the test information function can be used to 
understand the region of ability for which the test lacks 
informative items. Thus, it can serve as a map for further 
expanding or revising a test, to better measure perfor-
mance among individuals along the whole ability contin-
uum or within a targeted ability range. For example, in 
•12 Journal of Speech, Language, and Hearing Research 1–22
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the context of the VNT, if one were to want to optimize 
precision at the extreme ends of the ability continuum, 
where precision for ability estimates was relatively lower 
than for those in the middle of the distribution, additional 
items could be added to better target performance within 
that ability range. 

Beyond information derived from the test informa-
tion function, reliability indices provide another layer of 
interpretation that, perhaps, may be the most meaningful 
for clinical audiences (Nicewander, 2018). Such indices are 
bounded quantities (0–1) and are on the same metric as 
the traditional reliability indices that clinicians are typi-
cally exposed to during their clinical training. Categorical 
omega, and marginal and empirical estimates of reliability 
can serve as summary statistics of the performance of a 
given test. Conditional reliabilities on the other hand 
would seem to be of even higher practical value since they 
can be interpreted as the familiar indicators of the preci-
sion of measurement yet still reflect the regions of ability 
for which measurement if more precise. On this metric, 
ability estimates for the vast majority of participants (100 
out of 107) had a conditional reliability coefficient of 
> .8. From a practical standpoint, this finding, coupled 
with strong evidence of unidimensionality, suggests that 
IRT-derived test scores of the VNT are a psychometrically 
sound metric for quantifying action naming for applica-
tions that require at least that level of precision. This is 
for individuals with aphasia whose ability estimates range 
from −1.63 to 1.83. For those whose ability estimate falls 
outside this range, we recommend caution in drawing 
inferences based on VNT performance. In this study, 
which used participants from AphasiaBank, the majority 
of individuals outside this range fell on the more severe 
end of the aphasia continuum, although this may not nec-
essarily be the case in another sample. 

As alluded to previously, the same test modeled 
under both CTT and IRT can yield differing metrics of 
precision and reliability, which has significant implications 
for clinical practice and applied research. For example, 
the measurement of change is necessitated on specifying a 
score’s 95% CI, as based on its SEM. Under CTT, where 
measurement error is assumed to be constant across the 
ability continuum, CIs become unrealistically narrow for 
individuals on the extremes and overly wide for those in 
the middle of the ability distribution. This in turn can 
invalidate assessments of change; specifically, change score 
estimates for very mildly and severely impaired individuals 
would have an inflated Type I error rate, whereas those 
for individuals in the middle would have increased Type 
II error rate. 

Conceptual differences between CTT and IRT, as 
well as common statistical concepts of the latter (e.g.,
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information), may not be familiar concepts to key stake-
holders. This lack of familiarity may lead to a lack of 
awareness around potential psychometric limitations of 
behavioral measures and may additionally act as a barrier 
to the implementation of precise assessment tools or psy-
chometric frameworks such as IRT in aphasiology. Report 
of IRT reliability indices (e.g., marginal and empirical reli-
ability) in addition to more traditional IRT metrics, as 
done in this study, may help bridge this knowledge gap. 
Reliability indices are more likely to be meaningfully 
interpretable for clinical audiences (Nicewander, 2018), as 
they are bounded quantities (0–1) and are on the same 
metric as CTT-based reliability indices that clinicians are 
typically exposed to during their clinical training. 

Limitations and Future Directions 

In modern psychometrics, validation is a special case 
of evidentiary reasoning that requires evidence from multi-
ple different sources to support the intended interpretation 
of test scores in specific measurement situations (Lissitz, 
2009; Mislevy, 2006; Zumbo, 2007). In this study, we 
gathered initial evidence (e.g., unidimensionality) that sup-
ports the construct validity of the VNT. However, the inter-
pretation of the VNT scores depends on, as of yet, untested 
premises about the cognitive processes used by test takers 
while responding to the VNT. According to the developers 
of the larger NAVS, all of its subtests, including the VNT, 
are purportedly an index of morphosyntactic processing 
(Cho-Reyes & Thompson, 2012). Some evidence for this 
claim comes from two sources. First, item development and 
scoring procedures were designed to hold constant other 
related subcomponents of word and sentence processing (lex-
ical semantics, phonological encoding). Second, NAVS test 
scores were shown to discriminate a priori–defined groups of 
agrammatic and nonagrammatic speakers (Cho-Reyes & 
Thompson, 2012). Therefore, one future direction is to use 
cognitive and psycholinguistic theory to assess the extent to 
which the construct that is captured by VNT (i.e., the 
enacted construct; Cho-Reyes & Thompson, 2012) is the 
construct the test developers had in mind when they devel-
oped the test (i.e., intended construct, in this case morpho-
syntactic processing; Gorin & Embretson, 2006). Relatedly, 
another future direction is to evaluate the extent to response 
to items on the VNT is equivalent to response to items on 
picture naming tests of nouns, such as the PNT (Roach 
et al., 1996). Although prior research suggests that successful 
naming of verbs is contingent on item properties (i.e., image-
ability) distinct from item properties necessary to successful 
naming of nouns (i.e., frequency, age of acquisition, pho-
neme length; see Fergadiotis, Swiderski, & Hula, 2019; 
Mätzig et al., 2009; Szekely et al., 2005), both tests of verb 
and noun naming may ultimately be measures of anomia 
(i.e., word production impairments) and, as such, could 
Downloaded from: https://pubs.asha.org Carnegie Mellon University on 04/04/
potentially be equated within a single testing framework. 
However, further psychometric investigation using a rigor-
ous framework such as IRT is needed in order to determine 
what construct underlies both verb and noun naming tests. 
Conclusions 

The VNT is a unidimensional measure that can be 
productively modeled under IRT and with a relatively 
high degree of precision. Reliability indices suggest test-
level scores are reliable under both CTT and IRT, 
although the latter suggests that scores from individuals 
with notably mild or severe action naming impairment are 
relatively less reliable. Current users of the VNT should 
have confidence in interpreting scores derived under a 1-
PL IRT model or a total-correct CTT model as valid esti-
mates of verb naming ability for the purposes of determin-
ing overall severity and ranking individuals. Future work 
is needed to evaluate item properties of the VNT under 
IRT, as well as the degree to which an action naming task 
is reflective of morphosyntactic processing. 
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Verb Naming Test Transcription Information and Coding Conventions 

Transcription Procedure 

Participant responses were phonemically transcribed by two research assistants at Portland State University in a pseudoran-
dom order. In addition, since it was thought that participant responses to a verb confrontation naming test may elicit more 
multiword responses than a noun confrontation naming test, research assistants transcribed everything the participant said/ 
gestured in response to the stimuli and used a set of transcription coding conventions meant to capture elements of non-
fluent speech. 

Phonemic transcriptions were broad, and variations in dialect were transcribed as they were heard using the phonemic 
notation below. If a given production strayed from our lab’s phonemic conventions, as was the case for some British dia-
lects, that production was translated into Standard American English and transcribed in accordance with our conventions. 
Phoneme notation followed conventions developed by our laboratory for the purposes of use with a computer algorithm. 
Please see below for our phoneme conventions, a list of target phonemic transcriptions, and a list of transcription coding 
conventions. 

Transcription Conventions 

Phoneme Notation 

See the table below for a list of the phoneme notations used by our laboratory, as well as lists of examples. 

Table A1. Phoneme annotation. 

IPA Examples 

/p/ “pat” 
/b/ “bat” 
/t/ “ten” 
/d/ “den” 

/ɾ/ “butter” (flap - allophone of /t, d/) 

/k/ “coat” 
/g/ “goat” 
/f/ “fan” 

/v/ “van” 
/θ/ “thin” (voiceless) 
/ð/ “then” (voiced) 
/s/ “see” 

/z/ “zoo” 
/ʃ/ “shoe” 
/ʒ/ “occasion” 
/tʃ/ “church” 

/dʒ/ “judge” 
/m/ “man” 

/n/ “nose” 
/ŋ/ “sing” 

/ɹ/ “red” 
/l/ “late” 
/w/ “win” 

/j/ “yes” 

/h/ “hat” 
/ʔ/ “cotton” (glottal stop - allophone of /t/) 

/i/ “she” 

/æ/ “cat” 
/ɛ/ “red” 
/ɪ/ “fit” 
/u/ “boot” 

/ʊ/ “wood” 
/ɔ/ “dawn”
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IPA Examples 

/ɑ/ “not” 
/ʌ/ “but” (stressed) 

/ə/ “alone” (unstressed) 
/ɝ/ “heard” (stressed) 
/ɚ/ “perhaps” (unstressed) 
/aɪ/ “kite” 

/aʊ/ “cow” 

/ɔɪ/ “boy” 
/eɪ/ “state” 

/oʊ/ “vote” 
/iɹ/ “deer” 
/ɔɹ/ “door” 
/ɑɹ/ “dark” 

/eɪɹ/ “dare” 
/ʊɹ/ “cure” 

Note. IPA = International Phonetic Alphabet. 

Target Transcriptions 

See the table below for the phonemic transcription of the targets. 

Table A2. Phonemic transcriptions of the targets. 

VNT item IPA target 

Cut kʌt 

Bark bɑɹk 

Put pʊt 

Send sɛnd 

Drive dɹaɪv 

Wash wɑʃ 
Read ɹid 

Laugh læf 

Watch wɑʧ 
Give gɪv 

Swim swɪm 

Stir stɝ 
Pinch pɪnʧ 
Crawl kɹɔl 

Deliver dɪlɪvɚ 
Pour pɔɹ 
Howl haʊl 

Throw θɹoʊ 
Bite baɪt 

Shove ʃʌv 

Tickle tɪkəl 

Shave ʃeɪv 

Note. VNT = Verb Naming Test; IPA = International Phonetic Alphabet.
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Verb Naming Test Transcription Information and Coding Conventions 

Transcription Coding Conventions 

See the table below for a list of transcription coding conventions adopted from the CHAT manual (MacWhinney, 2000) for 
the purposes of this study. 

Table A3. Transcription coding conventions. 

Coding convention Definitions/examples 

Fillers &- Fillers or filled pauses (e.g., “um,” “uh,” “hmm”) were written orthographically preceded by &-. 

Communicators Communicators (e.g., “oh,” “okay,” “yeah”) were orthographically transcribed without any additional 
notation. This list of communicators created by Brian MacWhinney and Mitzi Morris, accessed from 
talkbank.org, served as a reference for identifying communicators and their standardized spellings. 

Phonological fragments &+ Phonological fragments or false starts, consisting of one or two phonemes, were written 
orthographically, preceded by &+. 

Letter sequence @k Letter sequences were denoted using @k following the string of letters produced. For example, the 
spelling of the verb cut was written as cut@k. 

Gestures & = ges: Any movement of a body part meant to express an action was written as & = ges:action. For example, 
& = ges:cut 

Sound Effects &= Any nonword vocalization meant to express an action was written as & = action. For example, & = 
laughs or & = cries. 

Unintelligible utterances xxx Unintelligible utterances were written as xxx in place of the unintelligible word/phrase/paraphasia. 

Repetition of single words [x N] All one-word repetitions were written once followed by the code 
[x N] where N is the number of times the word was produced 
in total. 

Repetition of phrases <> [/] All multiword repetitions were written out. All but the last repetition was included in <> followed by [/]. 

Retracing <> [//] All retracings or revised utterances were written with the first phrase in <> followed by the [//] code. 

Pause (.) Silent pauses between utterances lasting more than approximately 1 s were denoted as (.). 

Data Annotation Procedure 

Participant responses and investigator prompts were annotated by two research assistants at Portland State University 
in a pseudorandom order at the time of transcription. Disagreements in transcription between the two research assistants 
are being resolved by a research speech-language pathologist in a pseudorandom order. 

The following data annotation conventions (Table A4) were used to characterize participant responses and investigator 
prompts for the purposes of scoring the Verb Naming Test. 

Table A4. Response and prompt annotations. 

Notation Definitions/annotation instructions 

Response 1a Any verbal response the participant gives after being presented with the test item/first prompt from the test 
administrator. 

Response 2b Any and all subsequent verbal responses from the participant following a second promptc from the test 
administrator. If no response 2, leave blank. 

Delay 1 1 = yes, 0 = no, Yes if the time between the initial item presentation/prompt and the participant’s first response 
(excluding any initial fragments/fillers) is more than 10 s. If no response 1, leave blank. 

Delay 2 1 = yes, 0 = no, Yes if the time between the initial item presentation/prompt and the participant’s first response 
(excluding any initial fragments/fillers) is more than 10 s. If no response 2, leave blank. 

Multiword 1 1 = yes, 0 = no, Yes if the participant verbalizes more than one word, excluding fragments and fillers. If no 
response 1, leave blank. 

Multiword 2 1 = yes, 0 = no, Yes if the participant verbalizes more than one word, excluding fragments and fillers. If no 
response 2, leave blank. 

Additional prompts 1 1 = yes, 0 = no, Yes if the administrator provides more than one prompt before any first participant response. 

Additional prompts 2 1 = yes, 0 = no, Yes if the administrator provides more than 1 prompt following a first incorrect response. If no 
response 2, leave blank.
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Notation Definitions/annotation instructions 

No response NR, If the participant has no verbal response (excluding fragments/fillers) input NR in the corresponding response 
column. If no opportunity for response 2, leave blank. 

Facilitator prompt 1 0 = no, SE = semantic only, SY = syntactic and semantic, P = phonemic, G = gestures, E = sound effect, A = 
answer for any prompts given prior to the first response. If more than 1 type is given, separate the codes by a 
single space. 

Facilitator prompt 2 0 = no, SE = semantic only, SY = syntactic and semantic, P = phonemic, G = gestures, E = sound effect, A = 
answer for any prompts following a first incorrect response. If more than 1 type is given, separate the codes 
by a single space. If no opportunity for response 2, leave blank. 

Item not administered NA, Input NA into Response 1 and leave all other fields blank. 

a In instances where the test administrator did not provide a first verbal prompt, we defined Response 1 as any verbal 
response the participant gives after being presented with the test item. b In instances where the test administrator did not 
provide a first verbal prompt, we defined Response 2 as any verbal response the participant gives after completing their first 
response and after being presented with a first prompt from the test administrator. c Gestures or other nonverbal cues from 
the test administrator indicating the target action were treated as second prompts if they occurred after the participant’s first 
response. 

Facilitator Prompt Coding Conventions 

See the table below for types of facilitating prompts or cues given by investigators with examples and the coding conven-
tions used by our laboratory to annotate the data. 

Table A5. Facilitator prompt coding conventions. 

Code Type Example 

EP Exact prompt from the manual “What’s happening” or “Tell me what’s happening” or “Can you tell me another 
word for what’s happening?” 

AP Approximate prompt according to 
the manual 

“What’s he doing?” or “What’s she doing to him?” or “What’s she doing with it?” 
or “Can you think of another word for what he’s doing?” 

SE Semantic only “Here is a book. What is happening?” 

SY Syntactic and semantic “What is the boy doing to the girl?” or “What is the dog doing?” 

O Orienting to picture or picture part Points to picture and/or “Right here” or “This part” or “I’m sorry I didn’t hear you” 

P Phonemic “Mm Mm” or “It starts with an M” 

G Gestures The investigator makes a pinching gesture with their index finger and thumb. 

E Sound effect The investigator barks like a dog. 

A Answer The investigator verbalizes the correct response.
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Verb Naming Test Transcription Information and Coding Conventions 

Transcription Resolutions 

In the interest of developing a universal computer-adaptive naming assessment for both verbs and nouns, first response 
transcriptions were prioritized over second response transcriptions for resolution and scoring. Disagreements in first 
response transcription between the two research assistants were resolved by two research speech-language pathologists in 
a pseudorandom order. 

Time-Limited Transcriptions 

A research assistant applied a 10- and 15-s time limit to create two time-limited sets of transcriptions, one in accordance 
with the time allowed to name an item on the Verb Naming Test and one in accordance with the time allowed to name an 
item on the universal assessment under development, respectively. These time-limited sets of transcriptions were generated 
to be used for scoring such that any transcribed response that took place after the permitted time limit would be absent 
from the time-limited transcription and therefore not considered for scoring. 

Time-Limit Procedure 

As a general rule, the timed naming window started the moment after the picture was shown to the participant and the test 
administrator completed their initial verbal prompt, with both conditions having to be true in order to start the clock. 

This rule was adapted for cases where there was no first prompt from the administrator and/or the first prompt came 
shortly after the naming attempt began such that it overlapped with or interrupted the naming attempt. For example, if there 
was no verbal prompt, the clock started at the moment the picture was shown to the participant. If the participant started 
naming immediately after being shown the picture and the test administrator’s initial verbal prompt did not interrupt the par-
ticipant’s flow of speech, the clock started at the moment the picture was shown to the participant and any transcribed 
response that took place prior to the verbal prompt was considered for scoring. If the participant started naming immediately 
after being shown the picture and the test administrator’s initial verbal prompt did interrupt the participant’s flow of speech, 
the clock started at the moment the test administrator completed their initial verbal prompt and any transcribed response 
that took place prior to the prompt was considered for scoring.
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Appendix B 

Verb Naming Test Scoring Information 

Verb Naming Test Scoring Protocol 
The Verb Naming Test (VNT), a subtest of the The Northwestern Assessment of Verbs and Sentences (NAVS), was 

scored according to the protocol with some minor modifications/expansions made for clarity. See https://aphasia.talkbank. 
org/protocol/english/materials-aphasia/VNT.pdf for VNT administration and scoring protocol. In brief, a response produced 
within 10 s of item administration was considered for scoring and self-corrections were accepted. Correct responses 
included the target verb in any form (e.g., swim, swam, swimming), phonemic paraphasias of the target verb not resulting in 
a real word, and verbs semantically similar to and with the same argument structure as the target. Incorrect responses 
included: phrasal verbs and real word phonemic paraphasias of the target verb. 

Minor Modification 
VNT scoring protocol allows for a second response following a first incorrect attempt and prompt from the test adminis-

trator. For the purposes of this study, only a participant’s first response was considered for scoring and any subsequent 
response prompted by the test administrator, verbally or nonverbally, was not considered for scoring. 

In another related study assessing the variability in VNT administration, the results revealed inconsistent testing adminis-
tration across various sites that participate in APhasiaBank, particularly with prompts that deviated from the manual and 
contained syntactic and semantic information. When the examiner followed the rules and provided an additional exact or 
approximate prompt following an incorrect first attempt, it did not significantly affect the likelihood of a correct second 
attempt (only 9.43% correct second attempts were produced). Oftentimes an additional prompt was not even given after an 
incorrect first attempt due to examiner error (e.g., phrasal verbs produced or the examiner waited until the subject self-
corrected < or > 10 s). Thus, we determined that only the first responses within 10 s should be considered for scoring. 

Scoring Protocol Expansions 
An expanded scoring protocol was developed in order to dispel some ambiguity in the VNT scoring protocol, specifically 

to operationalize (a) selection of the scored attempt in the context of multiword/multiverb responses and (b) application of 
the VNT’s phonological similarity rule (i.e., “50% of phonemes must be correct”). 

Scored Attempt 
The final main lexical verb produced as part of the first response was selected for scoring. Auxiliary verbs, verbs pro-

duced as personal commentary, and/or copula “to-be” verbs functioning as main lexical verbs were systematically ignored. 
Paraphasic responses that were phonologically similar to the target or contained inflectional morphemes (e.g., –ing, –ed, –s) 
were recognized as verb approximations. 

Phonological Similarity 
A verb approximation or paraphasia was judged to be phonologically similar to the target verb only if the number of cor-

rect phonemes (i.e., phonemes shared between the target and response) comprised 50% of the total phonemes present in 
the response and 50% of the total phonemes present in the target. In other words, the 50% correct criterion had to be met 
for both target and response in order for the attempt to be deemed a phonemic paraphasia of the target. Only the lemma 
version of the target and response were used when applying this phonological similarity rule, and any inflectional mor-
phemes present in the response (e.g., –ing, –ed, –s) were ignored. The schwa phoneme was included in the shared pho-
neme count, and rhotic vowels were treated as vowel plus /r/. 

Scoring Procedure 
Phonemically transcribed participant first responses were scored by two undergraduate research assistants at Portland 

State University in a pseudorandom order in accordance with the expanded VNT scoring protocol. Phonemic transcriptions 
were recorded of the participant’s first full response after being presented with the test item/first prompt from the test 
administrator but before a second prompt. Only responses produced within the 10-s time limit were considered for scoring 
in accordance with the VNT scoring rules. If the participant self-corrected within 10 s, the final response was scored. For 
more information on VNT transcription procedures, conventions, and definition of terms, see VNT transcription information. 
VNT practice items were excluded from the VNT transcription study and the present VNT scoring study. 

Research assistants were instructed to (a) identify the final main lexical verb attempt selected for scoring, if applicable; 
(b) identify which final verb(s) were ignored according to the expanded protocol, if applicable; (c) assign one of seven ancil-
lary verb codes to scored verb attempts; and (d) score the response as correct (1) or incorrect (0). 

Scoring Resolutions 
Research assistant disagreements were resolved by an ASHA-certified speech-language pathologist at the level of 

scored attempt, ignored attempt, binary score, and ancillary verb code. Following the VNT protocol, Appendix B of the NAVS 
was used to determine correct alternate responses judged to be semantically similar with the same verb argument structure 
to the target. Verb attempts judged to be phrasal verbs were ultimately scored and resolved by two research speech-
language pathologist s and two PhD-level linguists.
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