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ABSTRACT 

Measures drawn from language samples (e.g., discourse measures) are used in clinical 

and research settings as a functional measure of language and cognitive abilities. In 

narrative elicitation tasks, discourse measures reliably vary by the type of prompt used to 

collect a language sample. Additionally, language features tend to very along with 

communicative context, topic, and modality (e.g., oral vs. written). However, until recent 

years, technology had not advanced sufficiently to support large-scale study of spoken 

language data. In this project, we used natural language processing and machine learning 

methods to examine the intersection of discourse measures, language modality, and 

cognition (i.e., working memory) in healthy young adults. In Experiment 1, we used a 

computational approach to examine discourse measures in spoken and written English. 

We achieved  >90% accuracy in binary classification (e.g., spoken/written). In 

Experiment 2, we took a behavioral approach, studying working memory and narrative 

discourse measures in a cohort of healthy young adults. We predicted that working 

memory would predict informativity in participants’ narrative language samples. We 

found mixed results for our two measures of informativity (e.g., the Measure of Textual 

Lexical Diversity and Shannon entropy). We attributed the observed differences in these 

two measures to the fact that, while both serve to measure new or unique information, 

MTLD indexes additional linguistic information (e.g., semantic, lexical). In contrast, 

Shannon entropy is based on word co-occurrence statistics. We interpret our overall 

results as support for the potential utility of machine learning in language research and 

potential for future research and clinical implementations. 
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CHAPTER 1 

GENERAL INTRODUCTION 

A growing area of interest in the evaluation and treatment of cognitive-linguistic 

disorders involves supplementing standard neuropsychological testing with the collection 

and analysis of naturalistic language samples (e.g., storytelling, conversation; Bryant et 

al., 2016; Fraser et al., 2015; MacWhinney et al., 2011; Mota et al., 2017; Orimaye et al., 

2017; Stark, 2019; Stark et al., 2022). Features derived from naturalistic language 

samples (i.e., discourse measures) range from the micro-level (e.g., psycholinguistic 

indices such as word-level concreteness or frequency) to the macro-level (e.g., syntactic 

complexity, story grammar; Bryant et al., 2016; Kong et al., 2016; Stark et al., 2022). 

Across a range of disciplines, researchers have documented a relationship between 

indices of cognitive-linguistic function (e.g., scores on standardized assessments, clinical 

diagnosis of disease) and various discourse measures. For example, people with mild 

cognitive impairment (MCI) tend to produce less syntactically complex stories compared 

to healthy controls (Roark et al., 2011). Analysis of student-written essays reveals that 

students who use more lexically sophisticated vocabulary (i.e., less frequently-occurring 

words) tend to achieve better academic outcomes relative to peers who use less 

sophisticated vocabulary (Crossley, 2020; Crossley & Allen, 2016; McNamara et al., 

2010).  

Informativity is a construct that conceptualizes the quantity of new or unique 

information in a given language sample (Shannon, 1950; Shannon & Weaver, 1949). 

Over the years, various discourse measures have been proposed and implemented to 
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index the informativity of a given language sample (K.T. Cunningham & Haley, 2020; 

Florian Jaeger, 2010; Fraser et al., 2015; Garrard et al., 2014; Garrard & Forsyth, 2010; 

Mitzner & Kemper, 2003; Nicholas & Brookshire, 1993; Shannon, 1950; Shannon & 

Weaver, 1949; Sirts et al., 2017; Yancheva & Rudzicz, 2016). These informativity 

measures tend to vary within and across research disciplines; however, by surveying the 

overall pattern of results yielded by the study of informativity within language, some 

general interpretations may be drawn about the relationship between cognitive-linguistic 

function, informativity, and the effect of language modality on these measures. These 

interpretations, in turn, lead to questions regarding the interrelationship of informativity, 

cognitive processing, and language modality. It is such questions that this paper aims to 

address. To follow, we present an overview of the theoretical and empirical motivations 

driving the current investigation.  

Informativity, Frequency, and Redundancy 

Computer scientists, computational linguists, and neuroscientists performing 

discourse analysis have consistently documented a relationship between various measures 

of informativity (e.g., correct information units, count ratio of nouns to verbs) and 

presence or risk of dementia among older adults (Fraser et al., 2015; Garrard et al., 2014; 

Garrard & Forsyth, 2010; Sirts et al., 2017; Yancheva & Rudzicz, 2016). Notably, early 

work examining informativity in language was largely agnostic to word-level lexical and 

phonological features, focusing rather on frequency of occurrence for a given lexical-

semantic representation (Shannon, 1950; Shannon & Weaver, 1949). Depending on the 

modality of language production, lexical-semantic representations (i.e., words) may take 

the form of a sequence of sounds (e.g., phonology as in spoken language) or a visual 
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orthography (e.g., as in written language). Word frequency and informativity have been 

linked through their respective relationships to the concept of redundancy within 

language. Across word types, those that occur more frequently may also be characterized 

as more redundant than words that occur less frequently – that is, repeated exposure to 

the same word (i.e., the same set of phonological or orthographic symbols) yields greater 

familiarity with said word (Shannon, 1950; Shannon & Weaver, 1949). The more 

familiar a word, the less surprising or informative it is considered to be; e.g., the greater 

redundancy it carries. More frequently-occurring (e.g., more redundant) words tend to be 

recalled more easily and produced more efficiently than less frequently-occurring words 

(Florian Jaeger, 2010; Monsell et al., 1989; Nicholas & Brookshire, 1993). Similarly, 

words that tend to frequently co-occur may be compressed in order to increase efficiency 

at the phrase, paragraph, or discourse level. 

For example, shortening the phrase going to à gonna reduces the total number of 

syllables from three to two while maintaining the semantic information contained in the 

symbolic representation in question (Florian Jaeger, 2010; Lewis & Frank, 2016; 

Nicholas & Brookshire, 1993). Interpreted within Shannon’s information-theoretic 

approach to language, one might argue that this phonemic and syllabic compression 

serves to increase the informativity of the phrase by maximizing the efficiency of the 

signal (Shannon, 1950; Shannon & Weaver, 1949). That is, by decreasing the number of 

syllables and/or phonemes required to convey the same conceptual-semantic meaning, 

each remaining unit of language carries a greater degree of information. In this example, 

by conveying an equivalent amount of information via a more compressed signal, the 

information density (i.e., efficiency) of the message is increased (Shannon, 1950; 
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Shannon & Weaver, 1949). The construct of information density is particularly 

interesting when considered within theories of spoken and written language production. 

Language Modality: Spoken vs. Written 

Observing a greater number of non-content filler words (e.g., um, uh) in spoken 

vs. written language samples, researchers in the past theorized that individuals were 

subconsciously decreasing their rate of information transmission in order to attenuate 

listeners’ working memory demands associated with spoken vs. written forms of 

expression (Basso et al., 1978; Biber, 2004; Chafe & Tannen, 1987; Fergadiotis & 

Wright, 2011; Mitzner & Kemper, 2003). In other words, they proposed that adding non-

content filler words (e.g., um, uh) to a language sample decreased information density at 

the sample level by reducing word-level informativity. One way to conceptualize the 

putative link between working memory and information density is through a cost 

reduction framework, where cost represents the relative demands enacted on working 

memory in language processing. 

Recall from our going to à gonna example that as the number of language units s 

decreased, information density increased. The process of language production ostensibly 

entails some degree of cognitive effort on the part of the author (Ben Shalom & Poeppel, 

2008; Dell & Anderson, 2015; Flower & Hayes, 1981; Kellogg et al., 2013; Piantadosi et 

al., 2011). Psychology and evolutionary biology tell us that the human brain is optimized 

for efficiency; thus, by decreasing the number of language units s required to convey the 

intended meaning, the effort (i.e., cost) of language production is decreased (Florian 

Jaeger, 2010; Piantadosi et al., 2011). Put simply, if language unit s no longer appears in 

a given language sample, then the cost associated with producing s is also eliminated. If 
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the overall informativity of the language sample is maintained during signal compression, 

as in going to à gonna, then it is a mathematical necessity that, as the number of 

language units s, represented in theoretical vector S, decreases by an integer value n, 

information density increases in the remaining sample s – n. On the surface, this 

reasoning seemingly contradicts Shannon’s information-theoretic framework (Shannon, 

1950; Shannon & Weaver, 1949). Briefly, Shannon asserts that increasing the number of 

words (i.e., language units s) in language sample LS is analogous to increasing the 

degrees of freedom in a mathematical model, thereby increasing entropy, i.e., the amount 

of possible variance within a given system. Thus, as word count increases, so too do 

degrees of freedom, accompanied by greater variability and greater uncertainty as to the 

source of the variability (Shannon, 1950; Shannon & Weaver, 1949). However, it is well 

established that human language processing is impacted by a wide range of lexical, 

phonemic, and semantic features (Chafe & Tannen, 1987; Piantadosi et al., 2011). 

Indeed, this reasoning holds up when examined in light of researchers’ earlier claim that 

increasing the number of language units s (i.e., words) decreases working memory 

demands in spoken language only if overall informativity remains constant (Basso et al., 

1978; Biber, 2004; Chafe & Tannen, 1987; Fergadiotis & Wright, 2011; Mitzner & 

Kemper, 2003). Inserting non-meaningful words (e.g., um, uh) yields a reduction in the 

average informativity of a given word s within language sample LS. It is not illogical to 

assume that such a decrease in word-level informativity corresponds to a similar decrease 

in the overall informativity of language sample LS. Further, given that spoken and written 

language inherently differ in their respective manner and mode of production, it is likely 

that the cost associated with increasing information density varies along with language 
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modality. While both spoken and written theories of language production cite working 

memory as a critical process component, additional parameters, including pragmatic and 

contextual information, must be considered when characterizing the relationship of 

language modality, working memory, and information density in language processing. To 

follow, we provide a brief overview of critical pragmatic and contextual factors thought 

to influence spoken and written expression. 

The Influence of Audience: Pragmatics and Context 

In the absence of sensorimotor degradation or deprivation, humans experience 

spoken language primarily through audition, recruiting auditory processing pathways to 

decode meaning from sound sequences. Speakers commonly manipulate vocal features 

(e.g., prosody, pitch) to convey affective information and signal non-literal language use 

(e.g., sarcasm, irony; see Richter & Chatterjee, 2021). Across many naturally-occurring 

spoken language contexts, facial expressions, gestures, and bodily orientation serve as 

conscious and unconscious cues to the successful interpretation of a speaker’s intended 

meaning. In these interactive contexts, pragmatically-induced temporal constraints limit 

opportunities for extended message planning, potentially leading to errors in spoken 

expression (e.g., semantic errors, spoonerisms). Although the aurality of spoken language 

precludes opportunities for revision once a message is produced (Auer, 2009), the 

dynamic nature of spoken communication allows for real-time listener feedback to flag 

and subsequently repair communicative failures. 

In contrast, written expression occurs in a context removed from the message 

receiver. In the absence of paralinguistic cues to signal emotion or non-literal language 

use, written expression relies solely on lexical-semantic (Richter & Chatterjee, 2021) and 
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syntactic (Whalen et al., 2013) features to convey information. In informal written 

language contexts (e.g., email, social media), research shows that manipulating 

punctuation (e.g., Thanks! vs. Thanks,) and spelling (e.g., heyyy vs. hey) can be effective 

ways to convey positive affect and other pragmatic information (Darics, 2013; Marlow et 

al., 2018). Writers must anticipate and address the needs of an imagined audience in 

order to successfully convey their intended meaning (Fussell & Krauss, 1992; Sauerland 

& Sporer, 2011). This process was termed “thinking for writing” by linguist Daniel 

Slobin (2018). Thinking for writing is thought to involve planning and revision 

throughout the composition of a written text (Epting et al., 2013; Flower & Hayes, 1980, 

1981). Free of the temporal constraints of spoken expression, writers are able to spend 

time crafting and refining the structure and content of their work to accurately represent 

their intended meaning. In its finished form, written language mirrors the linearity of 

spoken expression (Auer, 2009). However, the different pragmatic and contextual 

demands of written vs. spoken language production are thought to influence observed 

differences in the syntactic, lexical, and semantic features characteristic of each modality 

(Biber, 1986, 2004; Chafe & Tannen, 1987). In the current project, we focused in 

particular on information density as it relates to working memory in spoken vs. written 

language. 

Information Density, Working Memory, and Language Modality  

 Information density is a construct that refers to the dispersion of information 

across a language sample. It is measured in different ways across the various professions 

engaged in the study of language (K.T. Cunningham & Haley, 2020; McCarthy & Jarvis, 

2010; Shannon, 1950) and generally observed to vary such that information densityW > 
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information densityS, a finding attributed to differential working memory demands 

enacted in oral vs. written expression. However, information density, along with other 

discourse measures, is known to vary by language task (e.g., “Tell me a story” vs. a 

conversational exchange), along with contextual factors (e.g., pragmatic demands at work 

vs. at home). Thus, it is unclear whether modality contributes independent variability to 

measures of information density across different contexts and genres. By extension, it is 

unclear whether these measures, previously tied to working memory, do in fact reflect a 

differential working memory demand enacted in oral vs. written language expression.  

Here we present two studies that set the stage for a productive research program 

investigating the relationship of information density, working memory, and language 

modality in naturalistic language samples. Using both computational and behavioral 

methods, paired with appropriate use of advanced statistical analyses, we explore the 

relationship between discourse measures, cognitive systems and functioning, and 

language modality (i.e., spoken vs. written English) in two experiments. 

Experimental Overview 

In Experiment One, we use natural language processing methods to analyze the 

effect of modality on language measures indexing informativity (i.e., idea density), along 

with psycholinguistic variables known to drive variation in performance on single-word 

processing tasks (e.g., lexical decision time). We aimed to determine what, if any, effect 

modality has on discourse measures over and above known effects of genre and context. 

We predicted that a machine learning classification algorithm trained on 80% of the total 

language data would reliably and accurately classify the remaining 20% by modality 

using only discourse measures. 
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In Experiment Two, we work from a simple model of language production 

encompassing both spoken and written expression, with a focus on the role of working 

memory as a predictor of information density and lexical diversity (i.e., informativity or 

idea density) in narrative language samples elicited from healthy young adults. We 

predicted that working memory positively predicts information density and lexical 

diversity (i.e., informativity/idea density) in narrative language samples; with stronger 

effects in spoken than in written language. 
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CHAPTER 2 

EXPERIMENT ONE 

Abstract 

Purpose: We aimed to determine what, if any, effect modality has on discourse measures 

over and above known effects of genre and context. We predicted that a machine learning 

classification algorithm will reliably and accurately classify texts by modality using only 

discourse measures. Method: We chose the Spotify Podcast Dataset, containing 

622,115,467 words, as a representative corpus of naturalistic spoken English. Written 

subsections of the Corpus of Contemporary American English (i.e., all genres but spoken 

and TV/movies) represented the comparison corpus of written English, totaling 

641,410,953 words. After applying a cleaning and pre-processing pipeline to the data 

using the R programming language, we extracted discourse measures linked to human 

language processing. We trained a machine learning classification algorithm on 80% of 

the resultant data across modalities. We then tested whether the algorithm was capable of 

correctly classifying the remaining 20% of texts into either the spoken or written 

modality. Results: Across our full set of discourse measures and a series of subsequent 

leave-one-out analyses, we reached 93.15% accuracy in spoken/written text classification 

using a support vector machine classifier. Conclusions: We found support for our 

prediction that spoken and written language are statistically discriminable based on a 

curated set of discourse measures. In the future, it will be important to expand this 

research to examine interaction effects of modality and communicative context on our 

chosen discourse measures.  
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Information Density and Lexical-Semantic Features of Spoken vs. Written English  

Introduction 

Over many decades of research, the question of how certain features of language 

differ in speaking vs. writing has been addressed by linguists (Biber, 1986; Chafe & 

Tannen, 1987), psychologists (Cleland & Pickering, 2006; Louwerse et al., 2004; Mitzner 

& Kemper, 2003), cognitive neuroscientists (Brownsett & Wise, 2010; Planton et al., 

2013), and speech-language pathologists. Of particular interest to the current 

investigation are two discourse measures linked to working memory (WM) and long 

observed to vary between spoken and written language: information density (i.e., how 

information is distributed across a language sample) and lexical diversity (Biber, 1986; 

Blankenship, 1974; Chafe & Tannen, 1987; Mitzner & Kemper, 2003; Rubin, 1987; 

Slobin, 1997). These two measures each serve to represent an overarching linguistic 

construct that may be broadly termed idea density or informativity – that is, how tightly 

packed with fresh or less predictable information a given text is. Predictive modeling 

indicates that spoken language idea density can be used to discriminate neurologically 

intact older adults from those with Alzheimer’s disease or its sometimes-precursor, mild 

cognitive impairment (Sirts et al., 2017; Yancheva & Rudzicz, 2016). Similarly, students 

who use more lexically sophisticated vocabulary (e.g., lower frequency, lower 

concreteness) in essay writing tend to achieve better academic outcomes relative to peers 

who tend to use less lexically sophisticated words (Crossley, 2020). Altogether, it seems 

that language features may serve as a useful biomarker of neurocognitive function and 

disease potential. Yet, absent the knowledge of what drives reported differences in 

features of spoken and written language (e.g., modality vs. context or other factors), it is 
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difficult to draw conclusions about the cognitive systems putatively supporting language 

production in speaking vs. writing. In the current project we explore this question using 

large and representative corpora of English. In doing so, we aim to isolate effects of 

modality from other variables known to influence language processing (e.g., individual 

vocabulary knowledge, social setting) with downstream effects on related discourse 

measures. 

Information Density and Lexical Diversity in Spoken vs. Written English 

Converging evidence from a variety of disciplines supports a relationship between 

working memory and language processing in speaking (Baddeley, 2003; Cowan, 1999; 

Dell & Anderson, 2015; Gilchrist et al., 2008; Martin et al., 2018, 2020) and writing 

(Crossley, 2020; Crossley & Allen, 2016; Kellogg et al., 2016; McNamara et al., 2010; 

Olive & Kellogg, 2002; Sauerland et al., 2014). Two discourse-based language measures 

linked to working memory are information density and lexical diversity. Decades of 

cross-disciplinary research indicate that information density and lexical diversity tend to 

vary by modality (Basso et al., 1978; Biber, 2004; Chafe & Tannen, 1987; Fergadiotis & 

Wright, 2011; Mitzner & Kemper, 2003). For example, one measure of information 

density (i.e., propositional density), indexes the amount of information conveyed in a text 

(i.e., informativeness) using a count ratio of propositions to total number of words 

(Turner & Green, 1977). Evidence from participants in the Nun Study (Snowdon et al., 

1996) shows that intra-individual information density is greater in written than oral 

narratives, such that mean information conveyed per word is greater in writing vs. 

speaking (Mitzner & Kemper, 2003). Measures of lexical diversity (e.g., type-token ratio, 

TTR) tend to be smaller in oral vs. written expression, indicating more restricted 
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vocabulary use in oral expression (Louwerse et al., 2004; Mitzner & Kemper, 2003). 

Language researchers have attributed these observed differences in information density 

and lexical diversity to differential working memory (WM) demands enacted in speaking 

versus writing. However, absent the knowledge of modality effects on lexical diversity 

and information density across a broad range of communicative contexts, it is difficult to 

interpret the theoretical significance of the apparent link between lexical diversity, 

information density, and working memory as it pertains to differential cognitive demands 

enacted in speaking vs. writing. Thus, it is critical to determine what, if any, effects 

modality has on information density and lexical diversity.  

Psycholinguistic Features of Spoken and Written English 

There is general agreement that written language tends to occur in more formal 

(e.g., newspapers, legal briefs) contexts and therefore elicits use of a more sophisticated 

register than spoken language (Blankenship, 1974; Chafe & Tannen, 1987; Louwerse et 

al., 2004). It is well-established that psycholinguistic variables (e.g., concreteness, 

frequency) influence language processing at the single-word level (Balota et al., 2007; 

Pexman et al., 2017). Many psycholinguistic variables are intercorrelated: words that are 

longer tend to be acquired later (Kuperman et al., 2012) and more often refer to abstract 

vs. concrete concepts (Brysbaert et al., 2014). In turn, earlier-acquired words tend to be 

shorter, occur more frequently, and refer to concrete concepts (Brysbaert & Ghyselinck, 

2006).  

Research in cognitive language science indicates a positive correlation between 

lexical sophistication and response latency on single-word processing tasks (Balota et al., 

2007; Pexman et al., 2017). This suggests that on average, neurotypical adults are slower 



 

 14 

to process more lexically sophisticated words, although individual differences may be 

observed (Pexman & Yap, 2018; Yap et al., 2012). To our knowledge, there is currently 

no published research broadly characterizing lexical sophistication in oral vs. written 

expression. It is possible that spoken language is less lexically sophisticated than written 

language secondary to relative contextual formality. This idea converges with theories on 

WM load reduction strategies in oral vs. written expression (Chafe & Tannen, 1987; 

Slobin, 1997). Just as it is possible that speakers lessen WM load by using a restricted 

range of vocabulary words and conveying information more slowly (e.g., decreased idea 

density), it is possible that using less lexically sophisticated vocabulary further alleviates 

WM demands associated with language production. In the current study, we examine 

lexical sophistication, along with idea density, measured by information density and 

lexical diversity, in predicting text modality (e.g., spoken vs. written) using a form of 

advanced statistical analysis broadly referred to as machine learning. 

Machine Learning in Language Research 

Until recent decades, researchers lacked the computational and methodological 

tools to analyze the effect of modality (e.g., speaking vs. writing) on discourse measures 

across a broad range of communicative contexts. This reality reflects a broader 

perspective: knowledge of the world is constrained by the availability and quality of the 

technologies used in its measurement and analysis. Even after the invention of the tape 

recorder allowed for the collection of spontaneous, naturalistic spoken language data, 

researchers faced hours of manual transcription necessitated by speech’s innate 

ephemerality (Chafe & Tannen, 1987; Edwards & Lampert, 1993). More recently, 

advances in speech-to-text technology have enabled researchers to at least partially 
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outsource transcription to automated software systems, thus further alleviating the 

arguably greater demands engendered in researching spoken vs. written language (Chafe 

& Tannen, 1987; Clifton et al., 2020; Goh et al., 2020). Accompanying advances in 

computing and statistics have since intersected to facilitate language researchers’ ability 

to create, store, and apply quantitative analysis to large datasets representing spoken 

(Clifton et al., 2020) and/or written language. Traditional statistical analyses (e.g., 

ANOVA, linear regression) are insufficient to fully characterize language features across 

large corpora of spoken and written texts. Rather, as computing power and available data 

continued to expand, researchers developed new statistical methods targeted at extracting 

meaningful information from massive datasets. The resultant field of study, known as 

machine learning, has yielded widely-used applications including financial and political 

forecasting tools, facial identification software, and email spam filters (Lantz, 2013). 

Email spam filters are a representative application of supervised machine learning. In 

supervised learning, a machine learning algorithm is applied to model relationships in the 

data that contribute to a specific outcome (e.g., spam email vs. not spam email). 

Typically, this is accomplished by splitting data in to a training set and a relatively 

smaller testing set. The training set is used to develop the output classification model, 

which is then assessed using the testing set. We review one widely-used and well-

established approach to supervised machine learning in the following section.  

Support Vector Machine Classifiers 

Support vector machines (SVMs) were developed in the late twentieth century 

with the goal of improving binary classification tasks (Berwick, 2003; Cortes & Vapnik, 

1995). Today, SVMs are a well-established approach to multiple-group classification and 
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regression tasks, applied in a range of research disciplines (Bennett & Campbell, 2000; 

Lantz, 2013; Meyer, 2023). Although SVMs are considered a “black box” technology 

due to the sheer complexity of the algorithms used to build the classification model, the 

underlying mathematical operations have existed for decades (Bennett & Campbell, 

2000; Berwick, 2003; Lantz, 2013). In essence, SVM algorithms take an array of vectors 

as input and perform non-linear mapping into a high dimensional feature space. 

Advanced calculus is then used to determine the best-fit line separating two (or more) 

categories (Bennett & Campbell, 2000; Cortes & Vapnik, 1995; Lantz, 2013). Rather 

than weighting each data point equally in determining the best-fit line, as in linear 

regression, SVMs make use of ‘support vectors’ to optimize category margins. ‘Support 

vectors’ are the data points closest to category boundaries and are critical pieces of the 

optimization algorithm calculating the best-fit line (called a ‘hyperplane’ in feature 

spaces greater than two dimensions). Through iterative testing, SVMs optimize the 

hyperplane to achieve the widest possible confidence interval between groups (Lantz, 

2013; Meyer, 2023). SVMs tend to generate highly accurate models with good 

generalization to new data (Bennett & Campbell, 2000; Berwick, 2003; Cortes & Vapnik, 

1995; Lantz, 2013). Applied to language corpora, such approaches can help us to 

understand what discourse measures reliably vary between spoken and written expression 

by extracting and analyzing patterns of relationships not detectable to the human eye.   

The Present Study 

A combination of technological and computational advances in recent decades has 

facilitated researchers’ ability to collect, transcribe, and analyze naturalistic spoken 

language data.  In the current study, we contrast features of spoken and written language 
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with a particular focus on lexical diversity and information density. We predict that 

across a wide range of contexts and genres, spoken and written language are 

discriminable based on statistical distributions of discourse features and psycholinguistic 

measures drawn from naturalistic language samples. Our primary goal in this 

investigation was to determine whether information density and lexical diversity 

consistently differ by modality in their overall distributions across many contexts and 

genres of language use. We further explored whether spoken and written language 

systematically vary along various psycholinguistic indices linked to human language 

processing. 

Methods 

To address our predictions, we used natural language processing methods to 

extract all variables of interest from large and representative corpora of spoken and 

written English. We then used a support vector machine algorithm to determine whether 

discourse measures and psycholinguistic features can successfully predict text modality 

(e.g., spoken vs. written). 

Spoken English Corpus: The Spotify Podcast Dataset 

We selected the 622,115,467-word Spotify Podcast Dataset (Clifton et al., 2020) 

to represent our corpus of spoken English. The Spotify Podcast Dataset contains audio 

files and transcriptions for 18,376 podcasts (n = 105,360 unique episodes) released on the 

Spotify platform between January 1, 2019 and March 1, 2020. Podcasts were randomly 

sampled and cover a wide range of subjects (e.g., science, pop culture) and discourse 

styles (e.g., conversational, technical). Approximately 10% of podcasts included in the 

dataset were professionally produced, while the remaining 90% came from amateur 
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creators. Our goal in corpus selection was to provide a comprehensive depiction of 

contemporary spoken English across a variety of contexts and genres. The Spotify 

Podcast Dataset meets these criteria; however, it is not a perfect representation of 

spontaneously produced spoken language. Portions of the included podcasts include 

scripted material (e.g., introductions) and episodes were likely edited prior to publication 

on the Spotify platform. To address the validity of the Spotify Podcast Dataset as a 

representation of naturalistic spoken language, we compared the Spotify Podcast Dataset 

with various other corpora of spoken English (see Table 1).  

Table 1. Comparison corpora of spoken English 

Corpus Pub. 
Year Genre Documents Tokens 

Spotify Podcast Dataset 2021 Varied N=105,360 
(n=5,268) 622,115,467 

Buckeye Corpus 2000 Conversation 248 249,000 

Open 
American 
National 
Corpus 

Charlotte  2002 
Conversation; 

narratives; 
interviews 

93 198,295 

Switchboard 1992 Conversation 2,307 3,019,477 

Note. Pub. = publication. Charlotte = UNC Charlotte Narrative and Conversation 
Collection. Switchboard = Switchboard Corpus at UPenn, (Open American National 
Corpus, 2015). Buckeye = Iowa Buckeye Corpus, (Pitt et al., 2007).  
 

All of the comparison corpora included conversational spoken language; while 

one corpus additionally included narratives and interviews. Table 2 provides an overview 

of summary statistics for the four compared corpora.  

https://buckeyecorpus.osu.edu/
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Table 2. Corpora features comparison overview 

 
Spotify 
Podcast 
Dataset 

(N=5254) 

Buckeye 
(N=248) 

Charlotte 
(N=93) 

Switchboard 
(N=2307) 

Word Count     

Mean (SD) 5930 (4320) 1260 (434) 2140 (1670) 1330 (488) 

Median 
[Min, Max] 

5270 [53.0, 
32500] 

1300 [115, 
2240] 

1880 [252, 
10900] 1130 [126, 3100] 

Syllables     

Mean (SD) 1.30 (0.0868) 1.26 
(0.0414) 

1.24 
(0.0463) 1.23 (0.0440) 

Median 
[Min, Max] 

1.28 [1.03, 
1.87] 

1.25 [1.17, 
1.44] 

1.24 [1.14, 
1.35] 1.22 [1.12, 1.40] 

Letters     

Mean (SD) 4.01 (0.265) 3.82 (0.129) 3.82 (0.144) 3.71 (0.137) 

Median 
[Min, Max] 

3.94 [3.21, 
5.51] 

3.82 [3.49, 
4.19] 

3.82 [3.44, 
4.19] 3.70 [3.30, 4.25] 

Concreteness     

Mean (SD) 2.50 (0.0999) 2.50 
(0.0774) 

2.56 
(0.0871) 2.47 (0.0670) 

Median 
[Min, Max] 

2.49 [2.21, 
4.66] 

2.50 [2.31, 
2.73] 

2.57 [2.34, 
2.74] 2.47 [2.23, 2.69] 

Age of 
Acquisition 

    

Mean (SD) 5.05 (0.275) 4.90 (0.150) 4.70 (0.140) 4.90 (0.160) 

Median 
[Min, Max] 

4.98 [4.14, 
7.01] 

4.89 [4.56, 
5.47] 

4.70 [4.39, 
5.09] 4.87 [4.51, 5.48] 

Phonemes     

Mean (SD) 3.18 (0.233) 3.01 (0.117) 3.01 (0.128) 2.93 (0.120) 

Median 
[Min, Max] 

3.12 [2.57, 
4.73] 

3.00 [2.71, 
3.44] 

3.02 [2.66, 
3.30] 2.92 [2.60, 3.44] 

Frequency     

Mean (SD) 7350 (673) 6690 (553) 7200 (634) 7350 (514) 

Median 
[Min, Max] 

7380 [687, 
11100] 

6660 [5250, 
8610] 

7200 [5650, 
9520] 7330 [5270, 9540] 
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Spotify 
Podcast 
Dataset 

(N=5254) 

Buckeye 
(N=248) 

Charlotte 
(N=93) 

Switchboard 
(N=2307) 

MTLD     

Mean (SD) 58.5 (20.1) 44.5 (9.52) 46.6 (9.03) 41.7 (7.56) 

Median 
[Min, Max] 

53.2 [3.36, 
256] 

45.1 [22.2, 
74.6] 

45.4 [28.0, 
71.5] 41.0 [21.6, 83.6] 

Shannon 
entropy     

Mean (SD) 5.43 (0.344) 5.00 (0.200) 5.12 (0.232) 4.95 (0.134) 

Median 
[Min, Max] 

5.48 [1.45, 
6.55] 

5.04 [4.15, 
5.39] 

5.13 [4.37, 
5.67] 4.95 [4.13, 5.36] 

Note. SD = standard deviation; Min = minimum; Max = maximum. Word count = mean 
word count per document; MTLD = Measure of Textual Lexical Diversity; Syllables = 
mean number of syllables per word; Letters = mean word length in letters; Concreteness = 
mean per word, (Brysbaert et al., 2014); Age of Acquisition = mean per word, (Kuperman 
et al., 2012); Phonemes = mean per word; Frequency = word frequency, indexed as mean 
count per million words, from SUBTLEX-US (Brysbaert & New, 2009). 

Visual inspection reveals that Spotify has a slightly higher mean than the other 

three corpora in word count, followed by Charlotte, then Switchboard and Spotify. This 

pattern of results is not unexpected since the Charlotte corpus includes narrative language 

samples in addition to the conversational language samples also present in the other 

comparison corpora. Narrative language (e.g., personal or fictional stories) may be used 

in conveying more complex sequences of chronological or non-chronological events than 

conversational language, thereby necessitating the use of a greater number of words in 

narrative language. By extension, it is unsurprising that the mean word count per 

document in the Spotify Podcast Corpus (comprised of a range of genres) is over twice 

that of the Charlotte corpus. Spotify and Charlotte both have greater range and variance 

in their respective word count distributions when compared to the conversation-only 

spoken language corpora. However, along several psycholinguistic variables, the mean 
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values for the four corpora tend to be relatively close in value. In general, variables 

measured from Spotify tend to contain higher upper bounds compared to the other three 

corpora. This was more observable in some variables (e.g., MTLD) than others (e.g., 

mean syllables per word). Here, it is again possible that we are seeing an effect of the 

wide variety of genres included in the Spotify Podcast Dataset. On the whole, the 

distribution of variables in the Spotify Podcast Dataset appears similar to those drawn 

from the comparison corpora, particularly for word-level variables (e.g., mean 

concreteness) that may be less affected by modality than higher-level variables, such as 

MTLD (i.e., lexical diversity) and Shannon entropy (i.e., information density).  

Written English Corpus: The Corpus of Contemporary American English 

To represent written English, we derived a subset of the Corpus of Contemporary 

American English (CoCA; Davies, 2009). The CoCA consists of 485,179 texts published 

between 1990-2019. Texts are equally distributed across eight genres: academic, blog, 

fiction, magazines, newspapers, spoken, TV/movies, and web. We excluded the spoken 

and TV/movies genres to create a written English corpus of 416,401 documents (n = 

641,410,953 words).  

Language Measures 

We measured lexical diversity using the measure of textual lexical diversity 

(MTLD; (McCarthy & Jarvis, 2010). MTLD is a robust measure of lexical diversity and, 

unlike type-token ratio (TTR), accounts for text length in calculating lexical diversity 

(McCarthy & Jarvis, 2010). To measure information density, we used Shannon entropy 

(K.T. Cunningham & Haley, 2020; Shannon & Weaver, 1949) as implemented in the 

‘qdap’ package of the R programming language (Rinker, 2020). Shannon entropy is 
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adapted from the field of information theory and asserts that in a given context, more 

unpredictable (i.e., less frequent) signals convey greater information than more 

predictable (i.e., more frequent) signals (Shannon & Weaver, 1949). Shannon entropy is 

calculated using the equation (Shannon & Weaver, 1949): 

𝐻(𝑋) = 	−	(𝑃(𝑋!)log"𝑃(𝑋!)
#

!$%

 

Here, ‘information’ refers to the probability P of encountering a certain word Xi in 

a pool of n words. Essentially, the less probable the presence of the word, the more 

information it is judged to contain. Shannon entropy has a history of use in language 

research (Shannon & Weaver, 1949) and is sensitive to language processing in people 

with aphasia (K.T. Cunningham & Haley, 2020). In addition to our primary outcome 

variables of lexical diversity (McCarthy & Jarvis, 2010) and information density 

(Shannon & Weaver, 1964), we calculated the following variables, reporting overall 

means by document and means grouped by part of speech within document: 

a) word count; 

b) word length in number of letters; 

c) syllable count; 

d) syllables per word; 

e) word age of acquisition (Kuperman et al., 2012); 

f) word frequency (Brysbaert & New, 2009); 

g) word concreteness (Brysbaert et al., 2014); 

h) phonemes per word (Taylor et al., 2020). 
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We opted to include these psycholinguistic measures because a substantial body of 

evidence indicates that human language processing is sensitive to changes in these 

variables. For example, in a lexical decision task, reaction time is decreased for more 

frequent words and increased for less frequent words (Monsell et al., 1989). Similarly, 

people tend to process more concrete words (e.g., those representing concepts perceptible 

in the physical word) faster than less concrete and thus more abstract words such as 

justice (Brysbaert et al., 2014; Pexman et al., 2017). Such behavioral and physiological 

responses may be interpreted as increased cognitive effort in lexical processing secondary 

to specific distributions of psycholinguistic features characterizing a given word (Papesh 

& Goldinger, 2012; Piquado et al., 2010; van der Wel & van Steenbergen, 2018). 

Additionally, prior research suggests that, on average, written language tends to be 

characterized by a more ‘lexically sophisticated’ vocabulary than spoken language (e.g., 

lower word frequency, later age of acquisition). As such, we anticipated that this 

information would prove informative in developing the support vector machine learning 

algorithm we subsequently applied in our analysis. 

Data Processing 

All data processing and analysis was completed using the Temple University 

High-Performance Computing Center 'compute' servers and/or the R programming 

language. The 'compute' server collection hosts 88 CPU cores and up to 1.5 TB of RAM 

across three interconnected remote servers.1 After uploading our selected corpora to the 

server, we applied a custom cleaning pipeline (Finley, in revisions) to remove extraneous 

text (e.g., annotations) and non-alphabetic characters from all spoken and written 

 
1 See https://www.hpc.temple.edu/compute/ for details on ‘compute’ hardware and software features. 
 

https://www.hpc.temple.edu/compute/
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documents. Pre-processing steps varied between corpora secondary to differences in file 

types and structure (see Appendix A); however, the resultant cleaned dataset was 

homogenous across language modalities. Next, for all documents represented in each the 

spoken and the written corpus, we calculated our variables of interest using a set of 

custom natural language processing (NLP) pipelines. Figure 1 displays an overview of 

this process, separating components into consecutive steps.  

Figure 1. Flowchart of processing steps used in extracting language measures from 

corpora 

Step One 

Calculate MTLD and total number of words per 
document using the 'tm.plugin.koRpus' (Michalke, 

2021) package. 

Remove documents with a total word count <50 
because MTLD is unstable below this size (McCarthy 

& Jarvis, 2010). 

Step Two 
Extract and analyze psycholinguistic variables using 
the ‘udpipe’ package (Straka et al., 2016), reporting 
means by document and grouped by part-of-speech 

within document. 

Step Three 
Calculate Shannon entropy using the ‘qdap’ R 

package (Rinker, 2020) 

Note. MTLD = Measure of Textual Lexical Diversity. 

We concatenated results from our NLP analyses to create a dataset representative 

of each modality (e.g., spoken vs. written).  
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Analysis 

To assess whether our measured language variables could be used to classify texts 

by modality, we used the ‘e1071’ R package to train a support vector machine classifier 

on 80% of the extracted language measures, with 20% reserved for testing (Meyer, 2023). 

In constructing a SVM classifier, it is critical to adjust model parameters in order to 

optimize performance. Prior to constructing the training and testing datasets, we sampled 

~5% of the documents from each corpus and used ten-fold cross validation with varied 

model parameters to determine the optimal configuration for our spoken/written language 

classifier (Lantz, 2013; Meyer, 2023; Sirts et al., 2017; Yancheva & Rudzicz, 2016). 

Based on results from model tuning, we implemented a radial kernel SVM classifier with 

Cost = 100 and gamma = 0.1.  

Results 

Features of Spoken and Written English 

We used the R programming language to analyze discourse measures and 

psycholinguistic features across a broad range of spoken and written English language 

contexts and genres, with the goal of determining whether differences in these variables 

could be used to accurately predict text modality. Table 3 provides an overview of the 

discourse measures and psycholinguistic features derived from each corpus after data 

preprocessing and cleaning. Visual inspection reveals that the testing and training sets, 

representing 80% and 20% of the overall data, appear to accurately reflect the 

distributional properties of the overall dataset along all measured variables. 
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Table 3. Overview of spoken and written language data 

 Testing Set Training Set Overall 

 Spoken 
(n=19,229) 

Written 
(n=25,0

10) 

Spoken 
(n=76,9

17) 

Written 
(n=100,

042) 

Spoken 
(n=96,1

46) 

Written 
(n=125,

052) 

Word Count       

Mean (SD) 5930 
(4350) 

4490 
(8240) 

5970 
(4340) 

4530 
(8480) 

5960 
(4340) 

4520 
(8430) 

Median 
[Min, Max] 

5360 [50.0, 
29100] 

2150 
[50.0, 

213000] 

5410 
[51.0, 
45200] 

2160 
[50.0, 

260000] 

5400 
[50.0, 
45200] 

2160 
[50.0, 

260000] 

Word Length 
in Number of 
Letters 

      

Mean (SD) 3.82 
(0.250) 

4.44 
(0.362) 

3.82 
(0.250) 

4.45 
(0.362) 

3.82 
(0.250) 

4.44 
(0.362) 

Median 
[Min, Max] 

3.75 [2.90, 
5.45] 

4.43 
[2.67, 
6.86] 

3.75 
[2.93, 
5.74] 

4.43 
[2.99, 
7.06] 

3.75 
[2.90, 
5.74] 

4.43 
[2.67, 
7.06] 

Syllable 
Count 

      

Mean (SD) 7580 
(5440) 

6720 
(11900) 

7630 
(5440) 

6770 
(12200) 

7620 
(5440) 

6760 
(12100) 

Median 
[Min, Max] 

6930 [62.0, 
35100] 

3240 
[63.0, 

279000] 

6990 
[54.0, 
56800] 

3260 
[62.0, 

346000] 

6980 
[54.0, 
56800] 

3260 
[62.0, 

346000] 

Syllables per 
Word 

      

Mean (SD) 1.30 
(0.0851) 

1.50 
(0.136) 

1.30 
(0.0853) 

1.50 
(0.136) 

1.30 
(0.0852

) 

1.50 
(0.136) 

Median 
[Min, Max] 

1.28 [1.00, 
1.92] 

1.49 
[1.05, 
2.30] 

1.28 
[1.00, 
2.03] 

1.49 
[1.02, 
2.33] 

1.28 
[1.00, 
2.03] 

1.49 
[1.02, 
2.33] 

Word Age of 
Acquisition 

      

Mean (SD) 5.05 
(0.274) 

5.62 
(0.421) 

5.05 
(0.271) 

5.62 
(0.422) 

5.05 
(0.272) 

5.62 
(0.421) 

Median 
[Min, Max] 

4.98 [4.20, 
7.24] 

5.60 
[4.29, 
8.29] 

4.98 
[3.76, 
7.46] 

5.60 
[4.16, 
9.16] 

4.98 
[3.76, 
7.46] 

5.60 
[4.16, 
9.16] 
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 Testing Set Training Set Overall 

 Spoken 
(n=19,229) 

Written 
(n=25,0

10) 

Spoken 
(n=76,9

17) 

Written 
(n=100,

042) 

Spoken 
(n=96,1

46) 

Written 
(n=125,

052) 

Word 
Frequency 

      

Mean (SD) 7360 (665) 6110 
(695) 

7360 
(665) 

6120 
(684) 

7360 
(665) 

6120 
(686) 

Median 
[Min, Max] 

7390 [918, 
11600] 

6140 
[236, 

14600] 

7390 
[2200, 
13500] 

6150 
[97.8, 
14000] 

7390 
[918, 

13500] 

6150 
[97.8, 
14600] 

Word 
Concreteness 

      

Mean (SD) 2.50 
(0.0947) 

2.61 
(0.150) 

2.50 
(0.0949) 

2.61 
(0.150) 

2.50 
(0.0949

) 

2.61 
(0.150) 

Median 
[Min, Max] 

2.49 [2.12, 
3.99] 

2.59 
[2.03, 
4.14] 

2.49 
[2.16, 
3.62] 

2.59 
[1.98, 
4.40] 

2.49 
[2.12, 
3.99] 

2.59 
[1.98, 
4.40] 

Phonemes 
per Word 

      

Mean (SD) 3.18 
(0.228) 

3.76 
(0.341) 

3.18 
(0.228) 

3.76 
(0.342) 

3.18 
(0.228) 

3.76 
(0.342) 

Median 
[Min, Max] 

3.12 [2.28, 
4.70] 

3.75 
[2.48, 
5.47] 

3.12 
[2.31, 
5.22] 

3.75 
[1.98, 
5.70] 

3.12 
[2.28, 
5.22] 

3.75 
[1.98, 
5.70] 

MTLD       

Mean (SD) 58.6 (20.6) 99.9 
(26.3) 

58.7 
(20.9) 

99.6 
(27.0) 

58.7 
(20.9) 

99.7 
(26.8) 

Median 
[Min, Max] 

53.7 [3.90, 
592] 

98.3 
[2.08, 
463] 

53.6 
[3.03, 
513] 

97.8 
[3.92, 
1020] 

53.6 
[3.03, 
592] 

97.9 
[2.08, 
1020] 

Shannon 
entropy 

      

Mean (SD) 5.42 
(0.354) 

5.74 
(0.521) 

5.43 
(0.348) 

5.74 
(0.519) 

5.43 
(0.350) 

5.74 
(0.519) 

Median 
[Min, Max] 

5.49 [1.88, 
6.60] 

5.76 
[1.99, 
7.24] 

5.49 
[1.72, 
6.70] 

5.76 
[2.10, 
7.58] 

5.49 
[1.72, 
6.70] 

5.76 
[1.99, 
7.58] 

Note. SD = standard deviation; Min = minimum; Max = maximum. Word count = mean 
word count per document; MTLD = Measure of Textual Lexical Diversity; Syllables = 
mean number of syllables per word; Letters = mean word length in letters; Concreteness = 
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 Testing Set Training Set Overall 

 Spoken 
(n=19,229) 

Written 
(n=25,0

10) 

Spoken 
(n=76,9

17) 

Written 
(n=100,

042) 

Spoken 
(n=96,1

46) 

Written 
(n=125,

052) 

mean per word, (Brysbaert et al., 2014); Age of Acquisition = mean per word, (Kuperman et 
al., 2012); Phonemes = mean per word; Frequency = word frequency, indexed as mean 
count per million words, from SUBTLEX-US (Brysbaert & New, 2009). 

SVM Classification 

We executed SVM training using ten-fold cross validation with model parameters 

set to Cost = 100 and gamma = 0.1. Classification accuracy for cross validations on the 

training dataset ranged from 92.86% - 93.45% (mean = 93.15%). Similar results were 

observed in model testing, where classification reached 93.15% accuracy (95% CI = 

[0.9291, 0.9338]). Table 4 shows model performance on the testing dataset.  

Table 4. SVM classifier performance on testing set 

  Actual  

  Spoken Written Row Total 

Predicted 
Spoken 17,185 988 18,173 

Written 2044 24033 26,066 

Column 
Total  19,229 25,010 44,239 
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Table 5. SVM hyperplane parameters 

Model input feature Hyperplane parameter 

Shannon entropy -255.6736 

MTLD 30.98 

Word Count -236.01 

Mean Word Length -554.2156 

Syllables per Document -268.3249 

Syllables per Word -29.55 

Concreteness 190.24 

Age of Acquisition -120.72 

Word Frequency 98.55 

Phonemes per Word -231.54 

Number of letters per Word -196.02 

  Note. MTLD = Measure of Textual Lexical Diversity. 

Table 5 shows the hyperplane parameters for each of the SVM classifier input 

features. Hyperplane parameters are an abstracted representation of the relative 

contribution of each of the input features to the overall model performance. The greater 

the absolute value of the hyperplane parameter estimate, the greater its contribution to 

model performance. To determine the relative effects of each input variable on 

classification accuracy, we conducted a series of ‘leave-one-out’ analyses to assess the 
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relative contribution of each of the model input features to the overall performance of the 

SVM. Across all ‘leave-one-out’ analyses, classification accuracy was consistently at or 

above 93%. This suggests that no single model input feature was driving classification 

performance. Rather, the combination of all input features synthesized to form an 

accurate prediction model. 

Discussion 

Prior research in language science has documented a relationship between WM 

and processes of spoken and written language production. WM in turn has been linked to 

two discourse constructs (i.e., idea density and lexical diversity) observed to vary within 

similar spoken and written language contexts (e.g., a picture description task). It is well-

established that discourse measures and other language features (e.g., psycholinguistic 

variables) are influenced by communication contexts (e.g., in a classroom vs. a theme 

park). Advances in technology have enabled researchers to collect large and 

representative samples of naturalistic spoken language used across a wide range of 

contexts and genres, thereby allowing language contrasts by modality rather than situated 

within a given genre (e.g., books, magazines). In this project, we used natural language 

processing methods to extract salient discourse measures and psycholinguistic features 

from two large corpora representing spoken and written English, respectively. We aimed 

to determine whether written language, as suggested in prior research (Basso et al., 1978; 

Biber, 2004; Chafe & Tannen, 1987; Fergadiotis & Wright, 2011; Mitzner & Kemper, 

2003), is characterized by greater information density and lexical diversity compared to 

spoken language. Using a SVM classification algorithm trained on a large number of 

discourse and psycholinguistic measures extracted from spoken (n = 76,917) and written 
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(n=100,043) texts, we achieved ~93% accuracy in a binary classification task executed 

across 44,239 texts (n=25,010 written). To follow, we interpret these results, highlight 

study limitations, and offer directions for future research. 

Interpretations 

In this investigation, we collapsed across contexts and genres to examine effects 

of modality on language features previously linked to aspects of human language 

processing in both speaking and writing. The high degree of accuracy observed across 

multiple testing iterations of our classification algorithm suggests that modality 

contributes unique variance to the measured language features, independent of 

communicative context and/or genre. Considered within the broader context of research 

into spoken vs. written language, our results may be interpreted as an initial foundation of 

support for the previously proposed idea that cognitive systems (i.e., working memory) 

are differentially recruited in each modality, leading to downstream effects quantifiable in 

language features. However, results must be interpreted with caution given several study 

limitations that we address in the following section.  

Limitations 

Study findings suggest that spoken and written language are distinguishable based 

on language features extracted from large English-language corpora. We took great care 

in corpus selection to most accurately capture naturalistic use of spoken language across 

a range of communicative contexts. However, the fact remains that our spoken language 

measures are derived from podcasts, which may include pre-scripted elements (i.e., 

planning as in written language) or involve post-production editing, thereby distorting our 

language measures and calling into question their validity as representative of naturalistic 
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spoken language (Clifton et al., 2020). We attempted to address this issue by comparing 

the Spotify Podcast Dataset with existent spoken language corpora (e.g., telephone calls, 

personal conversations) and found a favorable degree of homogeneity in dispersion of 

language measures across the comparison corpora. Given these findings, we argue that 

the language measures derived in our analyses are a valid representation of naturalistic 

spoken language.  

Another limitation of the current study is the fact that metadata on linguistic 

subgenres (e.g., news, blogs) was available only for the written corpus; as such, we were 

unable to estimate interaction effects of modality*genre at a distributional scale. Our 

results indicate that modality does contribute some unique variance to language as 

measured by discourse features. However, it remains unclear whether effects of modality 

are further mediated by genre or other situational variables such as number of 

conversation partners. Finally, in this corpus analysis we were unable to determine 

whether idea density and lexical diversity are predicted by WM at the level of the 

individual. It is possible that WM is differentially enacted in producing spoken vs. 

written texts; however, cultivating a clearer understanding of the link between WM 

capacity, discourse features, and modality in a controlled setting (e.g., a laboratory 

experiment) is a critical next step in better understanding how cognition drives language 

at the level of the individual. We discuss this and other future directions in the following 

section. 

Future Directions 

In this project, we applied a binary SVM classification algorithm to evaluate 

distributional patterns of language measures in spoken vs. written English, achieving 
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~93% accuracy across model validation and testing. Our findings converge with prior 

research indicating that machine learning algorithms are capable of detecting even subtle 

changes in high-dimensional data, and as such have shown promise in accurately 

detecting disease from language data in schizophrenia and dementia, as well as predicting 

students’ future academic performance (Crossley, 2020; Crossley & Allen, 2016; Elvevåg 

et al., 2007; Mitzner & Kemper, 2003; Mota et al., 2017; Paulsen et al., 1996). In 

analyzing features of spoken vs. written discourse, it is helpful to have a benchmark of 

expected performance: for example, procedural narrative elicitation (e.g., “Tell me how 

to tie a shoe,”) generally yields language samples that are shorter as indexed by total 

number of words, elicit a less sophisticated vocabulary, and are less syntactically 

complex relative to, for example, a story retelling task (Fergadiotis & Wright, 2011; 

Stark, 2019). Performance outside of the expected range along a given discourse measure 

may signal underlying cognitive impairment or disease (Elvevåg et al., 2007; Fraser et 

al., 2015, 2019; Mitzner & Kemper, 2003; Mota et al., 2017; Orimaye et al., 2017; Sirts 

et al., 2017; Yancheva & Rudzicz, 2016). Thus, when indexing individual performance 

via language measures drawn from discourse, it is critical to interpret findings relative to 

the communicative context at hand. However, it remains unclear whether: a) modality 

differentially impacts lexical diversity and information density at the level of the 

individual; b) lexical diversity and information density are indeed driven by working 

memory, as previously proposed but (thanks to technological constraints) not yet 

empirically assessed across language modalities and genres. We begin investigating the 

link between WM, discourse features, and language modality in Experiment Two. 
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CHAPTER 3 

INTERIM DISCUSSION 

We will use the benchmarks described in this paper in Experiment 2 to 

contextualize discourse measures drawn from a behavioral study examining healthy 

undergraduates recruited from a large urban campus environment. Two of these indices 

(i.e., the Measure of Textual Lexical Diversity [MTLD], indexing lexical diversity; and 

information density, measured by Shannon entropy) are of particular interest vis-à-vis a 

transdisciplinary historical association with working memory (Chafe & Tannen, 1987; 

Mitzner & Kemper, 2003). 
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CHAPTER 4 

EXPERIMENT 2 

Abstract 

Purpose: We predicted that working memory positively predicts information density and 

lexical diversity in narrative language samples; with stronger effects in spoken than in 

written language. Method: We elicited spoken and written language samples from 

healthy young adults after administering a comprehensive neuropsychological battery 

indexing working memory, vocabulary knowledge, and processing speed. Across two 

study visits occurring ~2-4 weeks apart, participants provided a spoken and a written 

response to each of four discourse elicitation prompts. We examined effects of modality 

on discourse features for each of two prompt categories (e.g., expositional and 

storytelling) with a particular focus on two discourse measures linked to WM: the 

Measure of Textual Lexical Diversity (MTLD) and Shannon entropy. Results: We found 

that MTLD but not Shannon entropy tends to vary with language modality. Conclusions: 

Although MTLD and Shannon entropy are highly correlated and both served as indices of 

information density, it seems that Shannon entropy does not index a similarly rich 

representation compared to MTLD in regards to the scope and depth of related 

representations in lexical, semantic, and phonological systems. Future studies will benefit 

from more ecologically valid discourse tasks and added measures (e.g., theory of mind). 
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Working Memory and Information Density in Speaking vs. Writing  

Introduction 

Corpus analysis and other approaches to computational linguistics serve to 

provide a broad overview of the attributes typifying a given language system. However, 

an understanding of the general patterns and features of a given language is insufficient to 

fully characterize language use at the individual level (Lim et al., 2020; Pexman & Yap, 

2018). It is well established that a range of factors influence discourse measures (e.g., 

communicative context, modality). Individual level variance has historically been 

overlooked in neurotypical populations. Instead, neurotypical control groups are largely 

characterized en masse rather than seen for their potential to explain some of the 

variability surrounding influences on language production and downstream effects on 

discourse measures. In the current project, we explored the relationship between semantic 

processing and individual differences in working memory, processing speed, and 

vocabulary knowledge (i.e., semantic memory) in a cohort of healthy young adults 

enrolled in undergraduate coursework at a large public, urban university.  Our goal in this 

investigation was to examine the relationship between cognition and language measures 

extracted from a discourse task. We draw upon cross-disciplinary perspectives to propose 

an integrated model of language processing in speaking and in writing, with a focus on 

the role of working memory in supporting language production in oral vs. written 

expression. Before presenting our model, we outline several cognitive systems thought to 

support language processing and well-known to vary at the level of the individual.  
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Language Processing in Speaking and Writing 

Across theories of written and spoken language production, three cognitive 

processes are commonly identified: working memory, semantic memory (i.e., vocabulary 

size), and general cognitive ability (i.e., processing speed). To follow, we consider how 

current evidence supports or calls into question the structure and dynamics of these 

processes as related to language production. We then draw upon these findings to propose 

a simple model of language production, integrating oral and written modalities with a 

focus on the role of working memory in narrative language production. 

Working Memory 

Broadly, working memory refers to a process of item-specific activation and 

maintenance in order to complete some cognitive processing task. Over the years, 

different models of working memory (WM) have been proposed (Baddeley & Logie, 

1999; Baddeley & Hitch, 1974; Cowan, 1999; Engle, 2002; R. C. Martin et al., 2020) and 

subsequently incorporated into models of spoken and written language production (Dell 

& Anderson, 2015; Flower & Hayes, 1981; N. Martin et al., 2018; R. C. Martin et al., 

2020; Olive & Kellogg, 2002). Across models of working memory, there is general 

agreement that executive functions (e.g., attention, control) contribute to the selective 

activation and processing of items held online (Baddeley, 2003; Cowan, 2008; Engle, 

2002). There is an ongoing debate regarding the structure and domain-specificity of the 

working memory system. For example, Baddeley and Hitch (1974) proposed a modular 

working memory system in which a domain-general “central executive” regulates the 

function of domain-specific subsystems (i.e., buffers). These buffers (e.g., visuospatial, 

phonological, and episodic) serve as temporary stores for items retrieved from long term 
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memory (Baddeley, 2003; Baddeley & Logie, 1999). In contrast, Cowan’s embedded 

processes model situates working memory within the long-term memory store (Cowan, 

1988, 1998, 1999). A combination of voluntary and involuntary attentional processes 

serve to control item-specific selection from an activated portion of long-term memory, 

thereby bringing selected items into working memory for processing and manipulation 

(Cowan, 1999, 2008). While domain-specific portions of long-term memory may be 

activated, the embedded processes model characterizes working memory as a domain-

general system. For the purposes of the present paper, we define working memory as the 

cognitive process by which items are activated and maintained online for processes of 

encoding and manipulation. This definition assumes overlap between working memory 

and short-term memory (STM) consistent with the structure proposed by Cowan (2008), 

in which WM is distinguished from STM by its use of higher-order executive functions to 

process and manipulate items held online. We used a set of three complex span tasks to 

assess working memory across multiple domains: Reading (e.g., verbal WM), Operations 

(e.g., non-verbal WM), and Symmetry, (e.g., visuospatial/non-verbal WM).   

Working Memory in Oral vs. Written Expression 

 Successful language production requires integration across multiple sources of 

information (e.g., phonology, semantics, syntax) to complete activation and selection of a 

concept  within a given communicative context. Once selected, motor pathways must be 

activated in order to speak or write (i.e., transcribe) the word associated with the chosen 

concept. Both oral and written language production models attribute this process to 

working memory (Dell & Anderson, 2015; Flower & Hayes, 1981; Kellogg et al., 2016; 

Olive & Kellogg, 2002). The motor sequences supporting written language are thought to 
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tax WM capacity to a greater extent than those supporting spoken expression (Kellogg et 

al., 2016; Olive & Kellogg, 2002). Writing (e.g., transcription) not only takes more time 

than speaking, taxing WM duration, but also requires explicit instruction and practice to 

achieve fluent production. Children who participated in interventions targeting 

handwriting skills demonstrated post-treatment improvement in measures of written 

language quality (Alves et al., 2016; Alves & Limpo, 2015; Jones & Christensen, 1999). 

Alleviating transcription demands by implementing speech-to-text technology in children 

with traumatic brain injury (TBI) similarly resulted in improved language measures on a 

storytelling task (Noakes et al., 2019). This pattern of results indicates support for the 

role of WM in written language production: as transcription skills improve, more WM 

resources can be devoted to planning and lexical-semantic processing, leading to 

improved text quality (Alves et al., 2016; Jones & Christensen, 1999; Kellogg et al., 

2016; Olive & Kellogg, 2002). Indeed, people with aphasia (PWA) have shown some 

benefit in these measures when producing personal narratives by writing vs. speaking 

(Behrns et al., 2009). Researchers have attributed this finding to the durability of written 

messages obviating the need to hold previously communicated information in WM. 

However, it is unclear whether working memory is taxed to a relatively greater degree in 

spoken or written language, and how the demands enacted within each modality 

influence language features.  

Semantic Memory: Structure and Organization  

In spoken and written language, words serve as symbolic representations of 

conceptual knowledge stored in semantic memory. Theories of semantic memory may be 

broadly categorized according their account of how conceptual knowledge is acquired 
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and organized. Embodied approaches emphasize the role of direct experience in acquiring 

concept knowledge. These models propose that concept knowledge is stored in domain-

specific sensorimotor neural regions, each connected to a central hub dedicated 

exclusively to language processing (Barsalou, 2016; Hoffman et al., 2018) Critics of 

embodied semantics argue that this approach fails to account for abstract concepts (e.g., 

justice, love) that cannot be grounded in sensorimotor experience. Feature-based models 

account for abstract and concrete concepts by proposing a vector structure of semantic 

memory. Words are represented along an array of vectors representing sensorimotor (e.g., 

shape, texture) and affective (e.g., funny, gross) features (Binder et al., 2016; Troche, 

2018). Below, we give a brief overview of concreteness and other psycholinguistic 

variables thought to characterize this feature-based model of semantic memory. 

Language Features: Psycholinguistic Measures 

Researchers theorize that concepts sharing many features exist in close proximity 

to one another. Evidence for this relationship comes from studies of single-word 

processing tasks (e.g., lexical decision). In general, people tend to respond more quickly 

to words that are more closely related (Hoffman, 2018; Mirman & Graziano, 2012). This 

is true of words sharing similar sensorimotor and phonological/orthographic features 

(e.g., fuzzy, furry), as well as other psycholinguistic variables observed to influence 

human language processing: 

a. Word frequency– reflects the relative frequency of word 

occurrences; measured using the SUBTLEX-US corpus, 

containing word frequency data derived from TV and movie 

subtitles (Brysbaert & New, 2009); 
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b. Word concreteness – measures the extent to which a given word 

may be experienced through sensorimotor modalities; indexed 

through aggregated crowd-sourced Likert ratings (Brysbaert et 

al., 2014);  

c. Word age of acquisition – represented by aggregated human 

ratings reporting the age at which a given word was first 

encountered (Kuperman et al., 2012). 

We include these descriptive measures along with other relevant variables (e.g., 

word length, phonemes; (Taylor et al., 2020) thought to influence language processing in 

speaking and/or writing. Semantic memory is commonly indexed through measures of 

vocabulary knowledge (Dunn, 2018; Kaya et al., 2012; Uttl, 2002).  

Vocabulary Knowledge in Speaking and Writing 

Conceptual knowledge is recruited in both spoken and written expression. 

However, the timing and means by which typically developing, speaking children acquire 

and process the symbolic representations of concepts differs between speaking and 

writing. Spoken language acquisition occurs incidentally as children are exposed to direct 

and indirect speech input from parents, caregivers, and siblings (Kuhl, 2000). Through 

this exposure, children learn to associate certain combinations of sounds (i.e., words) 

with concepts (Kuhl, 2000; Leonard et al., 2007). After vocabulary size reaches a certain 

threshold, this meaning mapping can occur with as little as one exposure to a novel word 

(e.g., “fast mapping,” Carey & Bartlett, 1978). In contrast, writing is taught 

incrementally, beginning with single alphabetic characters and building to words, 

sentences, and paragraphs (Alamargot et al., 2010; Jones & Christensen, 1999). 
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Written language instruction typically begins in preschool, after oral 

communication skills are established. Existing knowledge of oral word forms (i.e., 

phonological awareness) may be leveraged to facilitate written language development 

(e.g., a teacher may tell a child to “sound out” a word to figure out how to spell it). 

Greater phonological awareness is positively correlated with children’s development of 

reading skills (Ehri et al., 2001). In turn, reading proficiency positively predicts time 

spent reading (i.e., print exposure), which is positively associated with writing 

proficiency into adulthood (Acheson et al., 2008; A. E. Cunningham & Stanovich, 1991; 

Epting et al., 2013; Mol & Bus, 2011). Given the association between print exposure and 

written expression, in our study we administered the Author Recognition Test [ART] 

(Acheson et al., 2008; Mar & Rain, 2015; Stanovich & West, 1989) to all participants as 

an index of print exposure. 

In sum, converging evidence demonstrates the importance of exposure to written 

texts in developing writing proficiency. While spoken language exposure is virtually 

inevitable across many social contexts, exposure to significant amounts of written 

language (e.g., books, stories) requires an intentional allocation of time and resources. As 

such, individuals vary in their exposure to spoken and written forms of language, leading 

to differences in their oral vs. written vocabularies. For example, it is possible that a child 

has heard a word but not encountered it on the written page, or vice versa. The opaque 

orthography inherent to English systems of oral and written expression (e.g., 

phonological and orthographic representations do not have a 1:1 mapping) makes it 

possible that assessing vocabulary knowledge in a single modality is not sufficient to 

fully capture the store of conceptual knowledge located in semantic memory. Thus, it is 
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important to index vocabulary knowledge not only through expressive language tasks 

(e.g., the short version of the North American Adult Reading Test [NAART35] (Uttl, 

2002)), but also through receptive language tasks that do not require knowledge of 

written word forms (e.g., the Peabody Picture Vocabulary Test [PPVT] (Dunn, 2018)). 

Processing Speed 

Processing speed is most simply defined as the time it takes to complete some 

cognitive task. Together, processing speed and WM ability are seen as driving factors 

underlying measures of general fluid intelligence (Conway et al., 2002; Lee & Chabris, 

2013). Faster processing speed is associated with better WM ability, a finding that has 

been attributed to similar demands of each enacted on processes of attention and 

inhibition (Conway et al., 2002; Lustig et al., 2006). It is well-established that processing 

speed varies according to task demands and stimulus characteristics (Brysbaert et al., 

2000, 2018; Lustig et al., 2006; Monsell et al., 1989). In cognitive and language sciences, 

processing speed is often measured using response latency (e.g., reaction time) in single-

word decision tasks (e.g., Balota et al., 2007; Pexman et al., 2017).  Evidence shows that 

greater vocabulary knowledge corresponds with faster reaction time in single-word 

decision tasks (Pexman & Yap, 2018; Yap et al., 2012), although it is unknown what 

drives this behavioral observation (e.g., processing speed vs. WM). Processing speed is 

thought to support oral and written expression by facilitating processes of lexical-

semantic activation and motor planning required in speaking and writing. In practice, it is 

unknown whether speaking or writing places greater demands on processing speed (e.g., 

relative to WM demands). However, it is likely that processing demands vary depending 

on communicative context. For example, a face-to-face spoken conversation may tax 
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processing speed to a greater degree than writing a diary entry. To assess the role of 

processing speed and how it may relate to language features observed in spoken vs. 

written expression in the current study, we used the Connections Trail Making Tests 

(Salthouse, 2011).  

Narrative Language Production: A Proposed Model Spanning Oral and Written 

Expression  

In successful narrative expression, a variety of cognitive and linguistic systems 

must work in synchrony to retrieve lexical representations of semantic concepts, holding 

these items online until production can be completed, all while maintaining an 

overarching narrative theme or goal (Allen et al., 2016; Behrns et al., 2009; Chafe & 

Tannen, 1987; N. Martin et al., 2018). It is generally thought that in both oral and written 

expression, working memory supports this process of activation and maintenance as 

executive functions (e.g., cognitive control, attention) work to ensure appropriate 

selection and sequencing of words. However, differential demands are enacted on these 

systems in oral vs. written forms of expression (Behrns et al., 2009; Dell & Anderson, 

2015; Kellogg, 2007; Olive & Kellogg, 2002). In spoken language, motor planning and 

execution of speech output is produced relatively quickly and once produced, is removed 

from focused attention, thereby freeing WM resources. In contrast, transcribing 

orthographic symbols via handwriting or typing occurs relatively slowly.  Thus, WM 

demands for motor sequencing and execution are relatively lower in speaking and higher 

in writing (see Figure 2). This effect is attenuated by individuals’ mastery of the 

transcription process – as transcription fluency improves, so too do measures indexing 
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text quality (Alamargot et al., 2010; Alves et al., 2016; Alves & Limpo, 2015; Jones & 

Christensen, 1999; Olive & Kellogg, 2002). 

Figure 2. Schematic overview of working memory demands in language 

production 

 

Note: Blue arrows represent the relative demands enacted on working memory through the 
language production process in spoken vs. written language. In motor planning and 
execution, working memory is taxed to a lesser extent in spoken relative to written language 
(upper blue arrows). However, after a message is produced, working memory demands are 
decreased in written relative to spoken language thanks to the durability of orthographic vs. 
aural representations (lower blue arrows).  
 

Pragmatic Influence 

In typical spoken language contexts, there is a pragmatically induced time 

constraint on expression. Whether in a conversational or narrative (i.e., more monologic) 

context, extended pauses and halting language production are generally perceived 

unfavorably by audiences (Behrns et al., 2009) and may contribute to a speaker “losing 

the train of thought” secondary to overall slowing of the language production process 

(Dell & Anderson, 2015; Kellogg, 2007; Olive & Kellogg, 2002). In written language 

contexts, these acute temporal constraints are typically absent (Allen et al., 2016, 2019; 

Epting et al., 2013). Thus, although transcription of written language is on the whole 
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slower than motor speech production, the lack of pragmatically-induced temporal 

pressures to respond leaves more opportunity to plan and revise throughout the written 

language production process (Epting et al., 2013; Flower & Hayes, 1981; Olive & 

Kellogg, 2002). The relative durability of written text relative to spoken text may further 

alleviate WM demands enacted in the language production process by maintaining an 

offline representation (e.g., a durable record) of language previously produced, rather 

than requiring online maintenance of aural output as in spoken language [see Figure 1] 

(Behrns et al., 2009; Epting et al., 2013). The opportunity for planning and revision in 

written expression may alter the interpretation of various discourse measures as 

indicators of cognitive-linguistic function when considered relative to interpretations that 

may be drawn from transcripts of oral language samples. 

Summary and Overview of the Present Study 

In general, written language tends to be characterized by greater information 

density than spoken language. Information density refers to the concentration of new 

information within a given text.  It is possible that conveying information at a slower rate 

over the course of a spoken narrative (e.g., by using pauses or filler words) alleviates 

pragmatically-induced temporal demands on critical processes of selection and retrieval 

supported by working memory. Information density may be indexed in several ways; 

here, we use two overlapping but distinct indices: the Measure of Textual Lexical 

Diversity (MTLD) (McCarthy & Jarvis, 2010) and Shannon entropy (Shannon, 1950; 

Shannon & Weaver, 1949) to index information density. We propose that by repeatedly 

retrieving the same lexical item instead of activating and selecting a greater number of 

novel lexical items, it is possible that working memory demands for lexical retrieval are 
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lessened in spoken relative to written English (see Figure 3). However, evidence to 

support a modality-mediated relationship between working memory and language is 

circumscribed to specific demographic groups (e.g., nuns) and discourse types 

(Fergadiotis & Wright, 2011; Mitzner & Kemper, 2003). 

Figure 3. Graphical overview of key systems recruited in language production  

Note: During language production, lexical-semantic items must be retrieved from semantic 
memory (i.e., lexical retrieval), a process mediated by general processing speed. Activated 
items are subsequently held online in working memory as an utterance unfolds, fading from 
working memory after successful production. Fluid cognitive processes are labeled in blue 
(e.g., working memory, processing speed) and crystalized aspects of cognition (e.g., semantic 
memory) are labeled in orange. How this process unfolds varies in different contexts (e.g., oral 
vs. written; formal vs. informal). 

This experiment aims to elucidate the effect of modality (e.g., speaking vs 

writing) on working memory and language processing. We investigate the relationship 

between working memory and intra-individual narrative language measures in healthy 

young adults using a mix of expository and storytelling discourse elicitation tasks. We 

evaluate participants along a range of neuropsychological measures designed to probe the 

cognitive systems thought to contribute to language production in oral and written 

expression (i.e., working memory, vocabulary knowledge, processing speed). We 

examine the predictive relationship between participants’ working memory score and two 

measures indexing information density (e.g., MTLD and Shannon entropy), using linear-

mixed effects models and canonical correlation analysis to test our prediction that 

Working memory

Semantic memory

Processing speed

Communicative Context 
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working memory positively predicts information density and lexical diversity in narrative 

language. However, we anticipate that this effect will be relatively greater in spoken vs. 

written language. 

Methods 

Participants 

Of n=36 participants recruited to the study, n=5 participants were excluded from 

analysis secondary to incomplete data (e.g., attended only one study visit; n=2) or 

ineligibility based on inclusion criteria (n=3). An additional n=8 participants were 

enrolled into the study and at the time of writing this document, are currently going 

through the study protocol.  A total of 23 healthy young adults (22 F); ranging in age 

from 18 - 32 years (M=21, SD = 2.61) participated in the study. Inclusion criteria were as 

follows: native English speaking with fluency in spoken and written communication, 

enrolled in university coursework at the undergraduate level, age between 18 – 35 years, 

normal or corrected-to-normal vision, normal or corrected-to-normal hearing. Exclusion 

criteria included the presence and/or history of any of the following: neurological 

disorder or injury (e.g., TBI, stroke, concussion), neurodegenerative disease, language or 

cognitive disorder, first language other than English. Participants were recruited via 

virtual flyers shared on undergraduate course websites and via email. 

Materials 

All participants were administered a neuropsychological battery designed to 

assess the following cognitive areas: working memory, vocabulary knowledge, 

processing speed, and print exposure. To follow is a brief overview of the 
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neuropsychological assessments used to measure participants' abilities in each of these 

cognitive domains. 

Working Memory 

Working memory was assessed using a set of complex span tasks (Unsworth et 

al., 2005). In a complex span task, working memory is targeted by interspersing 

distractors (e.g., sentences, math problems) among target items in a serial recall task 

(Daneman & Carpenter, 1980). Task difficulty increases as the number of target items 

and distractors increases. Complex span tasks are used (Conway et al., 2005; Unsworth et 

al., 2005; Wilhelm et al., 2013) to assess working memory in a variety of domains (e.g., 

verbal, spatial). We used a computerized, automated version of the complex span task 

that demonstrates good reliability and validity across over 5,000 trials (Redick et al., 

2012; Unsworth et al., 2005). Participants completed three complex span tasks, each 

targeting a different working memory domain: Reading, Operations, and Symmetry. We 

derived a Composite working memory score for each participant by first z-scaling then 

averaging across the domain-specific complex span task scores. Although we anticipated 

that the Reading Complex Span Score would be the best predictor of our outcome 

variables, we also anticipated that the domain-specific working memory scores would be 

highly correlated for each participant. Thus, we used correlational analyses to determine 

which working memory measure (i.e., Reading, Operations, Symmetry, or Composite) to 

use in linear mixed-effects modeling. 

Vocabulary Knowledge 

We measured vocabulary knowledge using the short version of the North 

American Adult Reading Test (NAART35; (Uttl, 2002). In NAART35 administration, 
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vocabulary knowledge is assessed by having participants read aloud a list of 35 

irregularly spelled English words (e.g., abstemious, demesne). One point is awarded for 

each correct pronunciation, with a total of 35 possible points. The NAART35 

demonstrates good reliability (Cronbach's ⍺ = 0.93) and validity (correlation r = 0.76 

with the Wechsler Adult Intelligence Scale – Revised Vocabulary raw score WAIS-R 

Vocabulary, (Wechsler, 1981)); and correlation r = 0.98 with the full NAART (Blair & 

Spreen, 1989) across young, middle-aged, and old adults (Uttl, 2002). The NAART35 

has previously been used in research examining individual differences in language 

processing (Pexman & Yap, 2018).  

We measured receptive vocabulary using the Peabody Picture Vocabulary Test - 

Fifth Edition (PPVT-5; Dunn, 2018). The PPVT-5 is a widely used picture naming 

assessment, normed on an English-speaking US population ranging in age from 2;6 - 99;0 

(years; months). Mean split-half reliability for the PPVT-5 = .97, with a standard error of 

measurement (SOM) = 2.63. The PPVT-5 demonstrates good validity across a range of 

comparable objective measures of receptive and expressive language abilities, 

respectively (Dunn, 2018). 

Processing Speed 

To assess processing speed, all participants completed the Connections Trail-

Making Tests versions A and B (Salthouse, 2011). In these timed tests, participants are 

required to complete alternating (i.e., Version A) or non-alternating (i.e., Version B) 

sequential trails connecting letters, numbers, or both. Structural equation modeling and 

contextual analyses indicate that performance on both versions of the test reflects general 

fluid cognition and processing speed (Salthouse, 2011). The alternating version of the test 
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is primarily related to cognitive processing speed, with some influence of general fluid 

cognitive ability. The non-alternating version of the test accounts for additional variance 

in general cognitive ability. In the current study, cognitive processing speed was indexed 

as the difference in score between the alternating and the non-alternating trail-making 

tasks (Salthouse, 2011). 

Print Exposure 

We indexed print exposure using the Author Recognition Test (ART; Acheson et 

al., 2008; Mar & Rain, 2015; Stanovich & West, 1989). In this task, participants read a 

list of names and place a check mark next to the names they know to be writers. 

Participants are discouraged from guessing in this signal-detection paradigm, where a 

final score is calculated by subtracting the total number of incorrect answers from the 

total number of correct answers. The version of the ART used in the present study 

contains 160 author names and 40 foils (Mar & Rain, 2015). 

Narrative Elicitation Prompts 

We administered four different prompts to participants: two expositional prompts 

and two narrative prompts. Three of the four prompts were derived from the 

AphasiaBank protocol: the broken window (BW) story, the cat rescue story, and the 

Cinderella story (MacWhinney et al., 2011). The BW story and the cat rescue story 

represented the two expositional prompts, while the Cinderella story was one of the two 

narrative prompts. We selected these prompts because they are widely used among 

language researchers, offer a standard approach to language sample elicitation and 

evaluation, and their respective effects on text-based language measures are recently 

established within the AphasiaBank data set (MacWhinney et al., 2011; Stark, 2019). The 
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second narrative prompt came from the short film Snack Attack. Snack Attack is a 4-

minute, 35-second animated film, summarized by its creators: “Waiting to board the 

train, an old lady just wants to eat her cookies in peace, but hijinks ensue when a teenager 

on the platform next to her seems intent on sharing them too.”2 We included a film-based 

stimulus because prior work has criticized Cinderella for being too simplistic and 

suggested use of more complex and ecologically valid discourse stimuli (K. T. 

Cunningham & Haley, 2020). Additionally, prior studies of information density in 

discourse have successfully used wordless short films in a similar manner to elicit 

narrative language from healthy controls (Ravid & Berman, 2006). The short film 

selected for the proposed project represents a simple but engaging story depicting 

familiar activities (e.g., buying a snack, waiting for public transit) likely to be familiar to 

all participants. 

Experimental Procedures 

Study participation involved two visits, spaced 2-4 weeks apart (mean = 21, SD = 

4.26). In the first visit, all screening, consent, and cognitive assessment procedures were 

administered by a trained research assistant in a quiet room located in the Department of 

Communication Sciences and Disorders. Participants underwent screening for 

inclusion/exclusion criteria and completed a verbal informed consent procedure prior to 

beginning any study tasks. All complex span tasks were presented on a computer screen 

using EPrime 3.0 Professional software (Psychology Software Tools, Incorporated); all 

other testing was completed via pen-and-paper. All study procedures were audio 

recorded. Videorecording was used only during the storytelling portion of each visit. The 

 
2 http://snackattackmovie.com/#about%20CastCrew 
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second study visit included only the storytelling task activities. Participants were able to 

opt whether to complete the second study visit in-person or remotely via Zoom 

videoconferencing software. 

Table 6. Story modality by prompt across task conditions 

Condition  Prompt Category 

  Expository  Story (re)telling 

  Broken 
Window 

Cat rescue  Cinderella Snack 

AA Visit 1 Spoken Written  Spoken Written 

 Visit 2 Written Spoken  Written Spoken 

AB Visit 1 Spoken Written  Written Spoken 

 Visit 2 Written Spoken  Spoken Written 

BA Visit 1 Written Spoken  Spoken Written 

 Visit 2 Spoken Written  Written Spoken 

BB Visit 1 Written Spoken  Written Spoken 

 Visit 2 Spoken Written  Spoken Written 

Note. ‘AA,’ ‘AB,’ ‘BA,’ and ‘BB’ are labels for task conditions.  

Data Processing 

Spoken Language Transcription. We used automated speech-to-text software 

(Otter Software Tools, 2023) to transcribe participants’ spoken language samples. To 

verify transcription accuracy, we compared all automatically-transcribed files with the 

recorded audiovisual file, correcting any perceived errors. 

Narrative Data Preprocessing. Using a custom text processing pipeline in the 

‘R’ programming language3, we transformed participant narratives into ordered vectors 

of single words. Prior to conducting our analyses, we removed narratives that contained 

 
3 Hosted on the ‘compute’ high-performance computing server group along with the other technological 
resources described in Experiment 1. 
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>50% off topic references. To determine off topic references, we used NLP methods to 

generate an index of story-specific semantic information content. Researchers (N. Martin 

et al., 2020; Richardson et al., 2021) have measured story-specific information by 

manually identifying and counting the number of “correct information units” (CIUs; 

Nicholas & Brookshire, 1993) or “main concepts” (Kong et al., 2016) present in a 

narrative. Here, we used the R programming language to automatically identify 

information content units characteristic of spoken and written participant narratives. Our 

approach is modeled on prior discourse analysis work (Sirts et al., 2017; Yancheva & 

Rudzicz, 2016) examining biomarkers of dementia using data from DementiaBank (Lanzi 

et al., 2023). 

First, we matched each word to its associated word embedding indexed in the 

Wikipedia 2014 GloVe dataset (Pennington et al., 2014).  In word embedding models, 

meaning is mathematically modeled as a hyperparameter across a number of abstract 

dimensions (n=50 in GloVe). GloVe represents word meaning based on word co-

occurrence statistics within a user-specified window size. This may be thought of as a 

more complex version of relatively simpler co-occurrence based representations of word 

meaning (e.g., latent semantic analysis; (Landauer & Dumais, 1997; Pennington et al., 

2014). Next, we filtered the word embedding data to include only nouns and verbs (Sirts 

et al., 2017; Yancheva & Rudzicz, 2016). After matching each word to its associated 

word embedding in the Wikipedia 2014 GloVe dataset (Pennington et al., 2014), we used 

the ‘stats’ package to conduct a k means cluster analysis, determining optimal cluster size 

for each combination of prompt*modality using the elbow method. Across conditions, 

results suggested an optimal cluster size k=10. We repeated this analysis using a ‘leave-
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one-out’ approach, iterating across participants to determine the percentage of off-topic 

references produced by any one participant relative to the clusters generated by the n-1 

sample. Participants with >50% word embeddings falling outside of the generated ICU 

clusters were excluded from analysis. 

Outcome Measures 

Our primary outcome measures were information density and lexical diversity. 

We measured information density using Shannon entropy (Ravid & Berman, 2006; 

Shannon & Weaver, 1949) as implemented in the 'qdap' package of the R programming 

language. Shannon entropy is a linguistic measure originated in the field of information 

theory and asserts that in a given context, more unfamiliar signals (i.e., words) convey 

greater information than more familiar signals (Shannon & Weaver, 1949). Similar to 

propositional density, Shannon entropy does not capture story-specific semantic content. 

Rather, Shannon entropy indexes informativity as the relative degree of predictability of a 

given word form (e.g., the probability of encountering word Xi in context n (Shannon & 

Weaver, 1949). 

To measure lexical diversity, we used the ‘tm.plugin.koRpus’ package (Michalke, 

2021) to derive the measure of textual lexical diversity (MTLD) for each narrative 

(McCarthy & Jarvis, 2010). MTLD is adapted from the type-token ratio (TTR; e.g., the 

ratio of unique words to total words in a given language sample). However, unlike TTR, 

it is robust to effects of text length. This is achieved by using a flexibly-sized moving 

window to calculate TTR across a language sample until it achieves a threshold of 0.72 

(McCarthy, 2005; McCarthy & Jarvis, 2010), at which point the number of words in the 

window is saved and the process is repeated (Figure 4). Each iteration yields an 



 

 56 

additional factor score. In the event that a given language sample LS ends with a word 

string such that TTRCURRENT > TTRCRITERION,  a partial factor score PF is calculated based 

on the percent change needed such that TTRCURRENT  = TTRCRITERION: 

PF =  
!!"_$%""&'!

()!!"_$"*!&"*+'   

MTLD is calculated by dividing the total number of words in a given language 

sample (TNWLS ) by the sum of all whole factors + PF (i.e., the total factor score, 

FACTOR_TOTAL) such that: 

MTLDLS = 
!',_-.

/0$!+"_!+!0-
 

In other words, for any given language sample of length N (measured in total 

number of words), the greater the number of words required to gain an additional factor 

score (i.e., achieve the criterion TTR), the greater the lexical diversity and the lower the 

number of factors yielded in analysis. Broadly, MTLD represents lexical diversity as the 

ratio of total number of words to the number of factors calculated from a set of N words 

(McCarthy, 2005). 

Figure 4. The measure of textual lexical diversity – factor scoring

 

Note. TTR = Type-Token Ratio. 



 

 57 

Psycholinguistic Features 

In addition to our primary outcome measures, we calculated the following 

psycholinguistic variables for each language sample:  

a. word frequency (Brysbaert & New, 2009);  

b. word concreteness (Brysbaert et al., 2014);  

c. word length in number of letters;  

d. number of phonemes per word (Taylor et al., 2020);  

e. word age of acquisition (Kuperman et al., 2012); 

f. number of phonemes per document (Taylor et al., 2020). 

We included these language measures because they are widely used in language research 

and abundant evidence suggests these features influence human language processing. In 

our analysis, we examined participant performance along these measures within context 

of the associated benchmarking estimates derived for spoken and written English in 

Experiment 1. 

Table 7. Proposed linear mixed-effects models 

Predictor 
Variable 

 Equation   

MTLD 
 Information density ~ working memory + modality + working 

memory*modality + (1|participant) + (1 | prompt_category) +  (1|prompt) + 
error 
 

Shannon 
entropy 

 Lexical diversity ~ working memory + modality + working memory*modality 
+ (1|participant) + (1 | prompt_category) +  (1|prompt) + error 

Note. MTLD = Measure of Textural Lexical Diversity. 
 

Statistical Analysis 

We used linear mixed-effects modeling to test our primary prediction that 

working memory would positively predict lexical diversity and information density with 
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stronger effects in written than spoken language. Linear mixed-effects models (LMMs) 

allow for consideration of both random and fixed effects, making them powerful tools to 

assess intra-individual performance across repeated measures (Magezi, 2015; Wiley & 

Rapp, 2019; Winter, 2013). We ran two LMMs to predict information density and lexical 

diversity (see Table 7 for model overviews). In both models, we included working 

memory as a predictor variable, along with modality and an interaction effect of working 

memory*modality. We included participant, prompt, and prompt category as random 

effects. We ran several LMMs with additional predictors of interest (e.g., vocabulary 

knowledge, processing speed, print exposure) added in a stepwise fashion with the goal 

of optimizing variance accounted for while avoiding multicollinearity among model 

inputs. Among these, we maintained variables that were significant predictors at p £ 0.05.  

Canonical Correlation Analysis. In addition to addressing our primary prediction that 

working memory has a greater effect on information density in spoken vs. written 

language, we also investigated whether the previously-reported relationship between 

working memory and our primary outcome variables (e.g., information density and 

lexical diversity) was similarly mediated by language modality across our spoken and 

written language sample distributions. Canonical correlation analysis (CCA) is a widely-

used statistical approach to dimension reduction and represents a multivariate 

generalization of the Pearson product moment correlation (Altaf et al., 2020; Dattalo, 

2014; Ho, 1987; Iweka & Anthonia, 2018; LeClere, 2006). CCA models the relationship 

between two datasets, each containing ≥ 2 variables, by assessing their respective 

variance and covariance matrices. The goal of CCA is to determine the linear 

combination of variables that maximizes the shared variance between the two datasets. 
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The number of canonical correlations yielded by this process is typically constrained by 

the number of variables in the smaller dataset (Altaf et al., 2020; Dattalo, 2014; Gonzalez 

et al., 2008; Iweka & Anthonia, 2018; LeClere, 2006). We constructed a predictor dataset 

consisting of our three working memory measures, along with an outcome dataset 

containing MTLD and Shannon entropy data, then used the ‘stats’ R package to complete 

canonical correlation analyses for participants’ spoken and written language samples. For 

each predictor-DV pair, we compared the correlation coefficients from the canonical 

correlation analysis with beta weights produced by a simple linear regression model.  

Results 

Neuropsychological Battery 

Summary statistics for neuropsychological test battery results are displayed in 

Table 8. Participant performance across the NAART35 (Muraki & Pexman, 2021), the 

ART (Stanovich & West, 1989), and the PPVT (Dunn, 2018) was within the expected 

range of performance based on normative values and/or previously published results for a 

similar demographic group. Performance on the complex span tasks (e.g., Symbol Span, 

Reading Span, Operation Span) was similarly within the range of expected performance 

based on normative data (Redick et al., 2012). Across the trail-making tasks (e.g., Trails 

A, Trails B, Trails B-A), participants in our study were on average somewhat slower in 

task completion relative to previously published results; however, the range of 

completion times across our sample was generally consistent with expected results 

(Tombaugh, 2004). Figure 5 displays bivariate correlations (significant at p > 0.05) 

among the neuropsychological measures of interest to the current investigation. “Trails” 

refers to the Trails B-A difference score, used to index processing speed.  
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Table 8. Neuropsychological evaluation outcomes  

 Standard Score 
(N=23) 

z-score 
(N=23) 

 
NAART   

Mean (SD) 16.0 (5.83) 0.0874 (0.980) 

Median [Min, Max] 18.0 [3.00, 26.0] 0.423 [-2.10, 1.77] 

ART   

Mean (SD) 9.22 (4.49) 0.0918 (0.988) 

Median [Min, Max] 9.00 [2.00, 17.0] 0.0440 [-1.50, 1.80] 

PPVT   

Mean (SD) 100 (10.1) 0.104 (0.975) 

Median [Min, Max] 100 [83.0, 123] 0.0658 [-1.58, 2.29] 

Symbol Span   

Mean (SD) 30.9 (6.22) -0.0201 (0.995) 

Median [Min, Max] 29.0 [17.0, 42.0] -0.326 [-2.25, 1.76] 

Reading Span   

Mean (SD) 59.0 (11.8) 0.187 (0.792) 

Median [Min, Max] 60.0 [32.0, 75.0] 0.254 [-1.63, 1.26] 

Operation Span   

Mean (SD) 59.7 (13.7) 0.147 (0.912) 

Median [Min, Max] 62.0 [15.0, 75.0] 0.298 [-2.84, 1.16] 

Trails A   

Mean (SD) 28.9 (10.7) 0.00862 (1.03) 

Median [Min, Max] 25.8 [14.1, 57.8] -0.288 [-1.41, 2.79] 

Trails B   

Mean (SD) 64.4 (23.8) -0.0130 (1.02) 

Median [Min, Max] 62.1 [33.6, 135] -0.110 [-1.33, 3.00] 

Trails B-A   

Mean (SD) 35.5 (18.3) -0.0219 (1.02) 

Median [Min, Max] 31.6 [12.6, 88.2] -0.239 [-1.30, 2.92] 

Note. Min = Minimum; Max = Maximum; SD = Standard deviation. NAART = North 
American Adult Reading Test; ART = Author Recognition Test; PPVT = Peabody 
Picture Vocabulary Test-5; Symbol Span, Operation Span, and Reading Span refer to the 
complex span task subtype scores; Trails = Connections Trail Making Test. 
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Figure 5. Neuropsychological measures – correlations 

 

Note. Only correlations significant at p> 0.05 are displayed. NAART = North American 
Adult Reading Test; ART = Author Recognition Test; PPVT = Peabody Picture Vocabulary 
Test-5; Symbol Span, Operation Span, and Reading Span refer to the complex span task 
subtype scores; Trails = Connections Trail Making Test.  

Narrative Data 

After running participant narratives through our data cleaning pipelines in R, we 

calculated our variables of interest and aggregated results in several ways in order to 

tease out differential performance as an effect of modality and prompt category (Table 9). 

To follow, we briefly summarize the results presented in these tables before presenting 

the results of our linear mixed-effects model analyses.  

Table 9. Discourse measures by modality and prompt category 

 Expositional Storytelling Overall 

 Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=92) 

Written 
(=92) 

 

Word Count       
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 Expositional Storytelling Overall 

 Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=92) 

Written 
(=92) 

Mean (SD) 246 
(325) 

130 
(63.2) 

625 
(284) 

310 
(73.7) 

436 
(358) 

220 
(113) 

Median [Min, 
Max] 

161 
[47.0, 
1730] 

114 
[33.0, 
286] 

602 
[209, 
1710] 

291 
[163, 
540] 

344 
[47.0, 
1730] 

236 
[33.0, 
540] 

Word Length in 
Number of 
Letters 

      

Mean (SD) 3.75 
(0.183) 

3.97 
(0.254) 

3.91 
(0.192) 

4.14 
(0.236) 

3.83 
(0.205) 

4.05 
(0.258) 

Median [Min, 
Max] 

3.73 
[3.35, 
4.13] 

3.92 
[3.44, 
4.60] 

3.89 
[3.47, 
4.31] 

4.12 
[3.67, 
4.61] 

3.83 
[3.35, 
4.31] 

4.02 
[3.44, 
4.61] 

Syllable Count       

Mean (SD) 295 
(384) 

161 
(79.5) 

784 
(365) 

405 
(99.7) 

540 
(447) 

283 
(152) 

Median [Min, 
Max] 

194 
[56.0, 
2050] 

141 
[44.0, 
375] 

760 
[247, 
2170] 

391 
[213, 
742] 

406 
[56.0, 
2170] 

295 
[44.0, 
742] 

Syllables per 
Word 

      

Mean (SD) 
1.20 

(0.0481
) 

1.24 
(0.0648) 

1.25 
(0.0574

) 

1.31 
(0.0789

) 

1.22 
(0.0583

) 

1.27 
(0.0794) 

Median [Min, 
Max] 

1.19 
[1.11, 
1.32] 

1.25 
[1.12, 
1.46] 

1.25 
[1.17, 
1.38] 

1.30 
[1.17, 
1.48] 

1.22 
[1.11, 
1.38] 

1.26 
[1.12, 
1.48] 

Word Age of 
Acquisition 

      

Mean (SD) 4.39 
(0.145) 

4.42 
(0.183) 

4.62 
(0.0905

) 

4.65 
(0.129) 

4.50 
(0.166) 

4.53 
(0.196) 

Median [Min, 
Max] 

4.38 
[4.06, 
4.85] 

4.40 
[4.11, 
4.82] 

4.62 
[4.45, 
4.83] 

4.63 
[4.45, 
5.10] 

4.53 
[4.06, 
4.85] 

4.56 
[4.11, 
5.10] 

Word Frequency       

Mean (SD) 7570 
(767) 

7280 
(1140) 

6750 
(456) 

6430 
(405) 

7160 
(752) 

6850 
(951) 
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 Expositional Storytelling Overall 

 Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=46) 

Written 
(n=46) 

Spoken 
(n=92) 

Written 
(=92) 

Median [Min, 
Max] 

7570 
[5720, 
9510] 

7280 
[4860, 
10700] 

6640 
[6000, 
7680] 

6360 
[5430, 
7530] 

7090 
[5720, 
9510] 

6630 
[4860, 
10700] 

Word 
Concreteness 

      

Mean (SD) 2.79 
(0.135) 

2.90 
(0.138) 

2.62 
(0.0716

) 

2.74 
(0.0756

) 

2.70 
(0.138) 

2.82 
(0.135) 

Median [Min, 
Max] 

2.77 
[2.52, 
3.13] 

2.91 
[2.54, 
3.22] 

2.62 
[2.47, 
2.79] 

2.75 
[2.51, 
2.88] 

2.68 
[2.47, 
3.13] 

2.82 
[2.51, 
3.22] 

Phonemes per 
Word 

      

Mean (SD) 2.93 
(0.125) 

3.06 
(0.172) 

3.03 
(0.170) 

3.19 
(0.224) 

2.98 
(0.156) 

3.12 
(0.209) 

Median [Min, 
Max] 

2.92 
[2.72, 
3.42] 

3.00 
[2.78, 
3.57] 

3.01 
[2.73, 
3.36] 

3.13 
[2.83, 
3.63] 

2.94 
[2.72, 
3.42] 

3.07 
[2.78, 
3.63] 

MTLD       

Mean (SD) 40.2 
(9.53) 

48.2 
(14.9) 

42.1 
(6.83) 

53.7 
(10.5) 

41.1 
(8.30) 

51.0 
(13.1) 

Median [Min, 
Max] 

41.4 
[20.5, 
66.7] 

46.5 
[21.0, 
85.2] 

41.9 
[29.6, 
60.4] 

53.8 
[34.3, 
86.9] 

41.6 
[20.5, 
66.7] 

51.0 
[21.0, 
86.9] 

Shannon entropy       

Mean (SD) 3.99 
(0.386) 

3.86 
(0.397) 

4.56 
(0.219) 

4.46 
(0.153) 

4.28 
(0.423) 

4.16 
(0.422) 

Median [Min, 
Max] 

4.03 
[2.95, 
4.97] 

3.89 
[2.98, 
4.56] 

4.57 
[4.16, 
5.03] 

4.47 
[4.08, 
4.77] 

4.30 
[2.95, 
5.03] 

4.31 
[2.98, 
4.77] 

Note. MTLD = Measure of Textual Lexical Diversity. Min = Minimum; Max = Maximum; 
SD = Standard deviation.  

Across both expositional and storytelling prompts, MTLD in written narratives 

tended to be greater than in spoken narratives (MTLDW > MTLDS). MTLD was greatest 

for written storytelling prompts and least for spoken expositional narratives. Prompt-

based discrepancies in MTLD were greater in written narratives than in spoken narratives 
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(mean differenceW = 5.5; mean differenceS = 1.9). Shannon entropy was greater in 

storytelling vs. expositional prompts, with negligible differences observed by modality 

within prompt category. Spoken narratives tended to be longer (e.g., Word Count; 

Syllable Count) than written narratives for both prompt categories. Expositional prompts 

were shorter than storytelling prompts, regardless of modality. Mean AoA was slightly 

greater for storytelling vs. expositional prompts and did not vary greatly by modality 

within prompt category. Mean word frequency was somewhat greater for expositional vs. 

storytelling narratives, with slightly reduced word frequency observed in written vs. 

spoken narratives for both expositional and storytelling prompts. 

Examining overall effects of modality, we found that among spoken language 

samples, MTLD was on average less than in the written group (mean difference = 10.1), 

with a more restricted range of variability also observed (MTLD rangeS = 46.2; MTLD 

rangeW = 65.9). Turning to Shannon entropy, we see a different pattern of results. Table 4 

shows that overall Shannon entropy was homogenous across modalities at the 

distributional level (mean difference = 0.12). In a post hoc analysis, we used paired 

samples t-tests to contrast participants’ overall means by modality for MTLD and 

Shannon entropy. The general pattern of results were consistent with those presented in 

Table 4: significant values were observed only for MTLD (mean difference = 9.82, t = 

5.73, degrees of freedom (df) = 22; p <0.001), while Shannon entropy did not vary 

significantly by modality (mean difference = -0.11; t= -4.1, df= 22; p = 1). Similar 

homogeneity between groups was observed across all psycholinguistic variables except 

those measuring text length (e.g., Word Count, Syllable Count). Indexed along these 

variables, spoken language samples were on average longer than written language 
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samples and demonstrated greater variability. Along measures of Word Count and 

Syllable Count, Shannon entropy appears to be more variable in spoken than in written 

language.  It is possible that the observed differences in Shannon entropy and MTLD are 

related to discrepancies in the use of “filler” words (e.g., um, uh) often encountered in 

spoken language contexts (Zhu et al., 2022) and thought to be used to offset working 

memory load putatively associated with spoken language processing (Biber, 1986; Chafe 

& Tannen, 1987). To explore this possibility, we repeated our measures after excluding 

the filler words um, umm, uh, uhh (Zhu et al., 2022). We observed little to no changes in 

our measured variables as a result of this manipulation (see Table 10), results reaffirmed 

in Welch’s two sample t-tests contrasting participant mean values measured with and 

without filler words (MTLD: tS =0.30; df = 43.9; p = 0.76; tW = -0.06; df = 43.9; p = 

0.95. Shannon entropy: : tS =0.11; df = 43.9; p = 0.91; tW = -0.05; df = 44; p = 0.96). 

Table 10. MTLD and Shannon entropy measured with and without filler words 

 Spoken 
(N=92) 

Written 
(N=92) 

 
Word Count   

Mean (SD) 436 (358) 220 (113) 

Median [Min, Max] 344 [47.0, 1730] 236 [33.0, 540] 

Word Count_NoFill   

Mean (SD) 431 (357) 220 (114) 

Median [Min, Max] 342 [46.0, 1710] 236 [33.0, 540] 

MTLD   

Mean (SD) 41.1 (8.30) 51.0 (13.1) 

Median [Min, Max] 41.6 [20.5, 66.7] 51.0 [21.0, 86.9] 

MTLD_NoFill   
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 Spoken 
(N=92) 

Written 
(N=92) 

Mean (SD) 40.6 (8.05) 51.1 (13.1) 

Median [Min, Max] 41.1 [18.8, 66.4] 51.2 [21.0, 87.6] 

Shannon entropy   

Mean (SD) 4.28 (0.423) 4.16 (0.422) 

Median [Min, Max] 4.30 [2.95, 5.03] 4.31 [2.98, 4.77] 

Shannon_NoFill   

Mean (SD) 4.27 (0.429) 4.16 (0.423) 

Median [Min, Max] 4.29 [2.91, 5.03] 4.31 [2.98, 4.77] 

Note. MTLD = Measure of Textual Lexical Diversity; NoFill = Calculated from language 
samples after removing um, umm, uh, uhh. 

In this investigation, we were primarily concerned with the effects of modality on 

discourse measures independent of context or genre; however, it is well-established that 

prompt category influences language features in intra-individual narrative discourse 

elicitation tasks (Fergadiotis & Wright, 2011; Stark, 2019). We examined this 

relationship in our data, collapsed across modalities, prior to running our linear mixed-

effects models. Table 11 characterizes the broad effect of prompt category on our 

measured discourse features. 

Table 11. Discourse measures by prompt category 

 Expositional 
(N=92) 

Storytelling 
(N=92) 

Word Count   

Mean (SD) 188 (240) 468 (260) 

Median [Min, Max] 139 [33.0, 1730] 385 [163, 1710] 

Word Length in Number of Letters   

Mean (SD) 3.86 (0.246) 4.03 (0.241) 

Median [Min, Max] 3.83 [3.35, 4.60] 4.00 [3.47, 4.61] 

Syllable Count   
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 Expositional 
(N=92) 

Storytelling 
(N=92) 

Mean (SD) 228 (284) 595 (327) 

Median [Min, Max] 171 [44.0, 2050] 499 [213, 2170] 

Syllables per Word   

Mean (SD) 1.22 (0.0603) 1.28 (0.0746) 

Median [Min, Max] 1.21 [1.11, 1.46] 1.27 [1.17, 1.48] 

Word Age of Acquisition   

Mean (SD) 4.40 (0.165) 4.63 (0.112) 

Median [Min, Max] 4.39 [4.06, 4.85] 4.62 [4.45, 5.10] 

Word Frequency   

Mean (SD) 7420 (978) 6590 (457) 

Median [Min, Max] 7440 [4860, 10700] 6540 [5430, 7680] 

Word Concreteness   

Mean (SD) 2.84 (0.146) 2.68 (0.0975) 

Median [Min, Max] 2.85 [2.52, 3.22] 2.69 [2.47, 2.88] 

Phonemes per Word   

Mean (SD) 2.99 (0.162) 3.11 (0.214) 

Median [Min, Max] 2.97 [2.72, 3.57] 3.06 [2.73, 3.63] 

MTLD   

Mean (SD) 44.2 (13.1) 47.9 (10.6) 

Median [Min, Max] 42.6 [20.5, 85.2] 46.4 [29.6, 86.9] 

Shannon entropy   

Mean (SD) 3.93 (0.395) 4.51 (0.195) 

Median [Min, Max] 3.97 [2.95, 4.97] 4.50 [4.08, 5.03] 

Note. Min = Minimum; Max = Maximum; SD = Standard deviation. MTLD = Measure of 
Textual Lexical Diversity; TTR = Type-Token Ratio. 

Lexical diversity (e.g., MTLD) and information density (e.g., Shannon entropy) 

were decreased in expositional prompts compared to storytelling prompts (Table 10). 

Compared to the storytelling prompts, the expositional prompts were on average shorter 

(e.g., decreased word and syllable counts across documents) and contained higher-

frequency words.  
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Across both expositional and storytelling prompts, MTLD in written narratives 

tended to be greater than in spoken narratives (MTLDW > MTLDS). MTLD was greatest 

for written storytelling prompts (as expected) and least for spoken expositional narratives 

(as expected). Prompt-based discrepancies in MTLD were greater in written narratives 

than in spoken narratives (mean differenceW = 5.5; mean differenceS = 1.9). Shannon 

entropy was greater in storytelling vs. expositional prompts, with negligible differences 

observed by modality within prompt category. Spoken narratives tended to be longer 

(e.g., Word Count; Syllable Count) than written narratives for both prompt categories. 

Expositional prompts were shorter than storytelling prompts, regardless of modality. 

Mean AoA was slightly greater for storytelling vs. expositional prompts and did not vary 

greatly by modality within prompt category. Mean word frequency was somewhat greater 

for expositional vs. storytelling narratives, with slightly reduced word frequency 

observed in written vs. spoken narratives for both expositional and storytelling prompts.  

Statistical Outcomes: Linear Mixed-Effects Modeling 

In this project, we investigated the relationship between working memory and two 

primary outcome variables (i.e., information density and lexical diversity), contrasting 

spoken and written language samples elicited from neurotypical young adults. We 

predicted that working memory would positively predict lexical diversity (measured via 

MTLD) and information density (measured via Shannon entropy), with greater effects in 

spoken vs. written language. As shown in Figure 6, the Reading Complex Span Task was 

the WM measure most highly correlated with participants’ mean MTLD and mean 
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Shannon entropy at p>0.05. Thus, we chose the Reading Complex Span Task to index 

working memory in our linear mixed-effects models.4 

Figure 6. Correlation matrix of working memory measures and outcome variables 

A. Spoken B. Written 

  
Note. Only correlations significant at p> 0.05 are displayed. Shannon.mn = Shannon entropy ; 
Reading span = Reading Complex Span Task; Operation span = Operation Span Task; Symbol 
span = Symbol Span Task; MTLD= Measure of Textual Lexical Diversity. 

We used a multivariate approach in our respective analyses, predicting lexical 

diversity (measured via MTLD) and information density (measured via Shannon entropy) 

using linear mixed-effects models. We included working memory, modality, and working 

memory*modality as fixed effects, with random effects of prompt category (e.g., 

expositional vs. storytelling), participant, and prompt. We ran additional linear-mixed 

effects models to incorporate each of our additional neuropsychological measures as a 

fixed effect, one at a time; however results of this analysis were not significant (see 

Appendix B for overview of model outputs). Based on the results of our descriptive 

analysis (e.g., Table 8), we included prompt (e.g., Broken Window, Cat Rescue, 

 
4 It is worth mentioning that, among the complex span tasks, the Reading score was also the most highly 
correlated with the composite WM score. This is perhaps unsurprising when one considers the fact that 
some degree of verbally-loaded WM processing is required for the participant to hold and manipulate 
linguistic information online, thereby enabling their successful study participation. There is certainly space 
for a larger theoretical discussion around the modality (in)dependence of WM; however, this was not the 
focus of the project at hand and so will not be discussed in  detail in this document. 
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Cinderella, Snack Attack) as another random effect in our final models. In the MTLD 

model, prompt accounted for additional variance otherwise attributed to random effects. 

Although prompt and other random effects account for vanishingly little variance in the 

Shannon entropy model, for comparison purposes, we present results from the same set 

of model inputs for both of our variables of interest in Table 12.  

Table 12. Linear mixed-effects model outputs 

  Shannon Entropy MTLD 

Predictors Estimates CI p Estimates CI p 

(Intercept) 4.31 3.89 – 4.72 <0.001 41.22 37.16 – 45.29 <0.001 

Working 
MemoryR 

-0.15 -0.26 – -0.04 0.008 -0.44 -4.33 – 3.46 0.826 

ModalityW -0.12 -0.18 – -0.06 <0.001 10.39 7.80 – 12.97 <0.001 

WMR × 
ModalityW 

0.01 -0.07 – 0.09 0.827 -3.04 -6.28 – 0.20 0.066 

Random Effects 
σ2 0.04 74.65 

τ00 0.03 participant 35.22 participant  
0.01 prompt 6.36 prompt  
0.08 prom_cat 0.35 prom_cat 

ICC 0.74 0.36 
N 2 prom_cat 23 participant  

23 participant 4 prompt  
4 prompt 2 prom_cat 

Observations 184 184 
Marginal R2 / 
Conditional R2 

0.088 / 0.761 0.193 / 0.483 

Note. WM = working memory; Working MemoryR  = Working memory measured by the 
Reading Complex Span Task; Working MemoryO  = Working memory measured by the 
Operation Complex Span Task; Working MemoryS  = Working memory measured by the 
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Symbol Complex Span Task; prompt = prompt category (e.g., Broken Window, Cat Rescue, 
Cinderella, Snack Attack); prom_cat = prompt category (e.g., expositional vs. storytelling).  
 

In the MTLD model, modalityW emerged as the only significant fixed effect 

(estimate = 10.39, p<0.001), with overall model marginal R2 = 19.3%, conditional R2 = 

48.3%, ICC = 36%. Meanwhile, working memory and modalityW were significant in the 

Shannon entropy model, with overall model marginal R2 = 8.8%, conditional R2=76.1, 

ICC = 74%. An interaction effect of working memory*modality was not significant in 

either model, but at p @ 0.07, seems to be approaching significance in the MTLD model.  

Canonical Correlation Analysis 

Table 13 displays the canonical coefficients yielded for the measures included in 

the predictor and outcome variable sets by modality, grouped into canonical variates. 

Canonical variates were significant at p < 0.05 using Roy’s largest root with F 

approximation (df = 22); F = 4.83 in the spoken model and F=3.55 in the written model. 

Canonical coefficients represent the relative variance accounted for by each of the 

included variables and are interpreted similarly to beta weights in regression models or 

factor loadings in principal component analysis (Iweka & Anthonia, 2018). The spoken 

model yielded canonical correlation = [0.31, 0.17]. In the written model, canonical 

correlation = [0.27, 0.05]. It appears that working memory as indexed by the Predictor 

Set (Table 12) is slightly more correlated with Shannon entropy and MTLD (e.g., the 

Outcome Set) in spoken (canonical correlate = 31%) than in written language (canonical 

correlate = 27%). Examination of the second canonical correlation reveals that Shannon 

entropy and MTLD are dissimilarly predictive of working memory when measured from 

spoken language (canonical correlation = 17%) vs. written language (canonical 

correlation = 5%).  
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Table 13. Canonical dimensions and associated coefficients from CCA 

  
Variable Name 

Canonical Variate 

 Canonical Variate 1 Canonical Variate 2 

Pr
ed

ic
to

r 
Se

t 

Working MemoryR 

Spoken 

  

-1.99 1.24 
Written -1.47 -0.74 

Working MemoryO 

Spoken 
  

-0.38 -1.24 
Written 0.34 -0.20 

Working MemoryS 
Spoken 0.37 0.38 

Written -0.07 1.14 

O
ut

co
m

e 
Se

t 

Shannon entropy 
Spoken 

  
2.63 -0.24 

Written 1.09 2.53 
MTLD   

Spoken -0.07 -0.11 

Written 0.02 -0.10 

Note. Working MemoryR  = Working memory measured by the Reading Complex Span Task; 
Working MemoryO  = Working memory measured by the Operation Complex Span Task; 
Working MemoryS  = Working memory measured by the Symbol Complex Span Task; MTLD 
= Measure of Textual Lexical Diversity. 

 
Lastly, we ran simple linear models for each of our individual working memory 

measures and MTLD and Shannon entropy, respectively. Results are displayed in Figure 

7. All beta estimates for predictor variables were negative, and among the three working 

memory measures, the Reading Complex Span Task was the strongest predictor of both 

MTLD and Shannon entropy, although this relationship was significant only in the 

Shannon entropy model. On the whole, beta weights for predictor variables in the 

Shannon entropy linear models tended to be smaller and more tightly clustered than those 

observed for MTLD. In the Shannon entropy model, Operation Span was the next 
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strongest predictor (p > 0.05), closely followed by Symbol Span (p=0.1). The opposite 

results are observed in the MTLD model, where Symbol Span (p=0.08) was a stronger 

predictor than Operation Span. However, none of the working memory measures yielded 

significant results in predicting MTLD; rather, modality is the only significant variable in 

this analysis. 

Figure 7. Simple linear model outputs 

A. Shannon entropy B. MTLD 

  

Note. Simple linear models run to predict Shannon entropy (A) and MTLD (B) using each of 
the three working memory span task scores. MTLD = Measure of Textual Lexical Diversity. 

Discussion 

In this project, we examined the relationship between working memory, language 

modality, and discourse features in healthy young adults using a mixture of standard 

(e.g., Broken Window, Cat Rescue, Cinderella) and novel (e.g., Snack Attack) discourse 

elicitation tasks. We predicted that working memory would positively predict information 

density and lexical diversity across modalities, with stronger effects in writing than in 

speaking. Results of linear-mixed effects modeling revealed a negligible role for modality 

in mediating information density (e.g., Shannon entropy), but strong effects of modality 

for lexical diversity (e.g., MTLD). To follow, we summarize and interpret the results of 

our various analyses and consider the theoretical and clinical implications of our findings.  
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Working Memory and Lexical Diversity 

We predicted that working memory (indexed by the Reading Complex Span Task 

score, or working memory - reading; WMR) would positively predict lexical diversity 

(indexed by MTLD) in speaking and in writing; with greater effects observed in the 

former modality. However, results from a linear mixed-effects model predicting MTLD 

did not entirely support this prediction (WMR model estimate = -0.44, p = 0.83). A 

similarly negative relationship was observed in correlations of participants mean-

aggregated MTLD score and WMR, although results were significant only in written 

language (rspoken= -0.05, p = 0.17; rwritten = -0.29, p < 0.01). This is of interest because it 

appears that much of the variability observed in the MTLD model can be attributed to the 

individual participant (τ00 = 35.22), followed by prompt (τ00 = 6.36), then prompt category 

(τ00 = 0.35). It appears that individual variability is a stronger predictor of MTLD than 

contextual factors (e.g., prompt) already known to influence lexical diversity and other 

discourse measures (Stark, 2019). It is possible that this finding is related to the 

inherently individualized nature of spoken and written language exposure and acquisition 

over the course of a human lifespan and manifested among neurotypical individuals in 

varied patterns of responses to a range of language processing tasks  (Hoffman, 2018; 

Mirman & Graziano, 2012). We observed a strong effect of modality (model estimate = 

10.39, p >0.001) such that writing tended to elicit a broader range of unique vocabulary 

words than speaking (MTLDW > MTLDS). This general finding is consistent with previous 

reports of relatively greater lexical diversity measured in written vs. spoken language, a 

phenomenon also observed in descriptive statistics generated from n=93 samples of 

spoken and n=93 samples of written language in the current study. 
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Working Memory and Information Density 

We indexed information density using Shannon entropy, predicting that with 

increased WMR, Shannon entropy would also increase. In linear mixed-effects modeling, 

WMR emerged as a significant predictor of Shannon entropy; however, as was the case 

with MTLD, the observed effect was not in the anticipated direction (model estimate = -

0.15, p <0.008). Similarly negative correlations (significant at p >0.05) were observed 

between participant mean-aggregated Shannon entropy and WMR  in spoken (r2= -0.48) 

and written (r2= -0.5) language samples. Although modality was a significant predictor 

(model estimate= -0.12, p < 0.001), its overall effect on Shannon entropy was relatively 

small (Shannon entropyW < Shannon entropyS). Taken together, these results suggest that 

Shannon entropy is generally not strongly influenced by language modality. Instead, 

WMR and Shannon entropy appear to share a generally similar proportion and degree of 

variance across language modalities. Thus, we found partial support for our predicted 

outcome: WMR predicts Shannon entropy in both spoken and written language samples. 

However, results were similar across modalities and in the opposite of the anticipated 

positive direction: decreased working memory appears to predict a slight increase 

(~2.7%) in Shannon entropy.  

Interpretations and Considerations for Future Study 

Working Memory Measures and Information Density. In linear mixed-effects 

modeling, we indexed working memory using the Reading Complex Span Task score, 

based on correlational analyses among our measures of interest in both spoken and 

written language. However, there is ongoing debate surrounding the modality specificity 

of working memory resources (Cowan, 2008; N. Martin et al., 2020; R. C. Martin et al., 
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2020). We used CCA to examine the overarching effects of working memory on lexical 

diversity and Shannon entropy, yielding two canonical variates for each modality. We 

found that the predictor dataset of working memory scores was similarly correlated with 

the outcome dataset in both spoken and written language (CCSpoken = 31%; CCWritten= 

27%). However, it did not appear that Shannon entropy and MTLD (i.e., the outcome 

dataset, approximating information density) were equally predictive of the working 

memory dataset across modalities: CCSpoken = 17%; CCWritten= 5%. Examining the output 

of simple linear regression models run for each of our working memory scores, along 

with the overall pattern of results reported across study analyses, it appears that Shannon 

entropy is not heavily influenced by language modality. Rather, it seems to be more 

predictive of general cognitive ability (e.g., WM, processing speed). MTLD, on the other 

hand varies between spoken and written modalities, as well as by prompt type.  

In this project, we indexed working memory using a series of complex span tasks 

with the goal of accurately characterizing human cognitive processing capabilities in an 

‘online’ assessment. We then assessed the predictive power of working memory on 

spoken and written discourse measures indexing information density (e.g., MTLD, 

Shannon entropy). Overall, we observed minimal effects of modality on Shannon entropy 

measured from discourse language samples produced by healthy young adults. Although 

Shannon entropy is not significantly impacted by language modality; it does appear to 

index some general cognitive ability. Unlike Shannon entropy, MTLD is linked to salient 

lexical, phonological, and semantic representations. By nature, lexical and phonological 

features of language will be impacted by modality. However, Shannon entropy is an 

index based on simple co-occurrence data. Thus, although MTLD and Shannon entropy 
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are highly correlated and both may be considered indices of information density, they 

accounted for disparate sources of variance in the current analysis. This overarching 

interpretation warrants further investigation in a future study. 

Pragmatics. In designing our experiment, we attempted to control for effects of 

pragmatic influences on language production processes in order to isolate effects of our 

predictor variables (e.g., working memory, processing speed, vocabulary knowledge). 

However, it is likely that we were unable to entirely eliminate pragmatic factors due to: 

1) the artificial nature of the experimental task; and 2) persistent effects of pragmatically-

induced temporal constraints secondary to generally increased exposure to and use of 

spoken language in day-to-day contexts. In other words, although the researcher left the 

room and participants were provided with clear prompt instructions, it is possible that 

these actions did little to alleviate the pragmatically-induced temporal demands 

associated with spoken expression. Awareness of pragmatic cues is influenced by theory 

of mind; that is, one’s ability to accurately infer information about the inner state (i.e., 

knowledge and beliefs) of others (Astington & Jenkins, 1999; Hale & Tager-Flusberg, 

2005). We did not measure theory of mind in this cohort of healthy young adults; 

however, given the limitations described above, it may be informative to include a 

measure of theory of mind in future studies. Alternatively, examining these relationships 

in a population with established impairment in theory of mind in a future study could 

prove informative in refining our understanding of the complex interplay of cognitive 

systems supporting spoken and written expression. 
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Conclusion 

Considered holistically, the relationship between Shannon entropy and MTLD 

appears to be complex. They are two highly correlated discourse measures (rS =.45, p < 

.0001; rW = 0.66, p < .001), yet demonstrated differential effects of modality and prompt 

in the current study (Biber, 2004; Chafe & Tannen, 1987). We attributed the observed 

differences in these two measures of information density to the fact that, while both serve 

to measure new or unique information, MTLD indexes additional linguistic information 

(e.g., semantic, lexical). In contrast, Shannon entropy is based on word co-occurrence 

statistics. Although both measures are indexed along numeric vectors, the representations 

of words (e.g., ‘word embeddings’) in Shannon entropy are considered hyperparameters 

– that is, they do not correspond to a physically measurable phenomenon. It is possible 

that this putative additional information contributed to linking MTLD and language 

modality, whereas the same effects were not observed for Shannon entropy. This 

interpretation, along with other limitations mentioned previously, warrants exploration in 

a future study. 
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CHAPTER 5 

GENERAL DISCUSSION 

In this project, we sought to characterize the relationship between discourse 

measures, cognitive function, and effects of language modality (e.g., oral vs. written). We 

focused our approach on discourse measures linked to working memory (WM) ability 

(e.g., MTLD and Shannon entropy) via their association with the construct of idea density 

(i.e., informativity). Working within a theoretical framework constructed from 

convergent, multi-disciplinary evidence (Bryant et al., 2016; Chafe & Tannen, 1987; 

Kellogg et al., 2013; Nicholas & Brookshire, 1993; Olive & Kellogg, 2002; Shannon, 

1950; Shannon & Weaver, 1949; Stark, 2019; Yancheva & Rudzicz, 2016), we proposed 

that working memory (WM) underpins language processing across modalities, and 

differential WM demands enacted in speaking vs. writing drive observed differences in 

discourse measures collected from spoken vs. written data. In Experiment 1, we took a 

computational approach, using natural language processing methods to explore how 

language features are differentially distributed in spoken vs. written English, independent 

of well-known effects of context (e.g., at a baseball game vs. at a wedding) and genre 

(e.g., expository, storytelling). We predicted that the statistical distribution of language 

features would significantly vary by language modality. In a large corpus analysis, we 

found support for our prediction: a supervised machine learning algorithm trained on an 

80/20 train/test split achieved >90% accuracy across multiple testing iterations of a 

binary classification method known as a support vector machine. We thus established 

initial evidence that some degree of observed variance in discourse measures is likely due 
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to modality alone, in addition to well-known variance attributable to context and genre. 

In Experiment 2, we expanded on the results of Experiment 1 to propose and test a novel 

cognitive-processing model of narrative language. We kept a theoretically motivated 

focus on the role of working memory in receptive vs. expressive processing demands 

enacted in oral vs. written discourse, predicting that the relationship between 

informativity and objective measures of WM would be attenuated by language modality, 

with greater effects observed in spoken language. We observed divergent results for our 

primary measures of informativity/idea density (e.g., MTLD and Shannon entropy). 

MTLD varied by modality and by prompt; however, Shannon entropy was not observed 

to significantly vary by modality as assessed via linear-mixed effects modeling and 

canonical correlation analysis. To follow, we discuss the relationship between MTLD and 

Shannon entropy, two measures of informativity/idea density that appear to index 

differential variance attributable to WM. We contextualize the relationship between 

Shannon entropy and generative language models, framing our general discussion within 

the promises and pitfalls associated with the use of such tools, sometimes referred to as 

“artificial intelligence.” 

Meaningfulness in Human Language vs. Large Language Models  

Statistical learning refers to a process by which repeated exposure to a 

phenomenon or system builds cumulative knowledge, yielding a stable representation 

over time (e.g., the phenomenon is ‘learned’). Some language scientists argue that 

statistical learning is a key mechanism driving the acquisition and maintenance of 

abstract concept knowledge (e.g., truth, joy) stored in semantic memory (Barsalou, 2016; 

Binder, 2016). Supporting evidence for this claim may be observed in the word frequency 
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effect, referring to the fact that people tend to respond more quickly to a given word if 

they encounter it more often (Monsell et al., 1989). Similarly, feature-based approaches 

to the structure and organization of semantic memory suggest that concepts which tend to 

co-occur tend to be more similar (e.g., are closer together in Euclidean geometric space) 

than concepts with decreased co-occurrence. Measures of feature similarity in such 

models may span multiple levels of language processing (e.g., lexical, phrasal). 

Architects behind generative language models (e.g., OpenAI’s ChatGPT, Google’s Bard) 

attempted to capture word meaning by following this logic, using matrix algebra to 

estimate the most likely next word in a given linguistic context. In generative language 

models, these estimates are based on co-occurrence parameters extracted from massive 

linguistic datasets and therefore, some argue, offer insights into human statistical learning 

in language acquisition (Contreras Kallens et al., 2023). While the insights drawn from 

large-scale data analyses are valuable for improving our understanding of the structure 

and function of language as a whole, it is difficult to extend this application to 

implementation in a real-world setting (e.g., post-stroke language rehabilitation) given 

the profound difference in the acquisition and representation of meaning in humans 

versus machines. 

Modern computer science was developed in the context of information theory 

with special attention paid towards the linguistically-derived informativity measure of 

Shannon entropy. While this approach to computer science was beneficial in that it is 

scalable, since the philosophy underpinning Shannon entropy was derived from language, 

it is non-additive. In other words, since language is an emergent, complex system, the 

sum of the parts (i.e., lexical informativity) does not equal the sum of the whole (i.e., 
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textual informativity). Such non-linear scaling is in fact typical of complex systems, 

including language (Massip-Bonet et al., 2019). 

In computer science, the non-additive nature of informativity indexed across 

different levels of language processing is putatively solved by using increasingly large 

language samples to estimate word co-occurrence frequencies. By applying linear 

algebra, these co-occurrence estimates are transformed into vector representations termed 

hyperparameters (Lantz, 2013). Among the language researchers that consider 

hyperparameters analogous to feature-based characterizations of semantic memory (i.e., 

Contreras Kallens et al., 2023), some have attempted to classify the type and degree of 

semantic relatedness between lexical items (Reilly et al., 2022) by using a mix of 

hyperparameters and psycholinguistic indices generated from crowd-sourced data 

(Brysbaert et al., 2014; Kuperman et al., 2012). However, the non-additive nature of 

meaning embedded across various levels of language suggests that it is inappropriate to 

apply informativity measures (i.e., hyperparameters) derived from aggregated lexical co-

occurrence statistics, which in turn are drawn from multiple large samples of lexical data, 

to examine meaning at the level of the individual, be it a word or a human being. Rather, 

our results suggest that it is more accurate to examine meaning (i.e., informativity/idea 

density) not through simple word frequency co-occurrence measures of informativity 

(i.e., as in Shannon entropy), but rather, to use the seeming ‘point of stability’ described 

in the development of MTLD (McCarthy, 2005; McCarthy & Jarvis, 2010) as an example 

of a latent cue embedded in language. Such a cue, while not detectable to the human eye, 

is quickly and accurately captured via machine learning methods and based on the results 
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of our experiments, appears informative in refining our understanding of the underlying 

emergent properties of language and other complex systems (Massip-Bonet et al., 2019). 

The ability to quickly and accurately capture discourse measures across various 

levels of language processing (e.g., lexical vs. textual) using machine learning represents 

a promising tool for language researchers. In speech-language pathology and other 

potential areas of clinical application, it is vital that machine learning methods are 

interpreted and deployed within a theoretically motivated framework. With appropriately 

meticulous application and interpretation, machine learning methods may prove useful 

over the long-term in regards to future clinical applications. 

Long-Term Potential for Clinical Applications 

Critically, machine learning algorithms are capable of detecting even subtle 

changes in high-dimensional data and have shown promise in accurately predicting 

disease in a range of populations. The benchmarking language measures generated in this 

study have the potential to further our understanding of relative impairment in clinical 

populations (e.g., aphasia, dementia), as well as provide normative data for use in 

developing cognitive-linguistic screening tools based on discourse measures. Language 

researchers and clinicians (i.e., speech-language pathologists) have long used discourse 

analysis to supplement standardized language testing and to evaluate treatment outcomes 

for PWA (Bryant et al., 2016). In some cases, PWA demonstrate dissociated language 

impairment in speaking vs. writing (Basso et al., 1978); thus, in a clinical context it is 

critical to elicit a language sample in both modalities to inform clinical decision making 

on issues including the severity of language impairment, rehabilitative potential, and 

approaches to treatment. Such an approach within medical speech-language pathology 
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would align with increasingly popular “precision medicine” approaches to health care. 

Precision medicine represents a departure from a “one-size-fits-all” approach to treating 

disease: in precision medicine, health care is flexibly adapted based on an individual’s 

personal and health histories as well as sociocultural and environmental factors. Health 

care systems implementing precision medicine frameworks demonstrate improved patient 

outcomes and reduced operating costs (Alyass et al., 2015; Kasztura et al., 2019). 

However, future research is needed to fully characterize the potential and pitfalls of using 

big data to inform individual level decisions surrounding healthcare treatment and 

rehabilitation. In future research, we plan to refine our characterization of distributional 

features (i.e., discourse measures) typical of oral and written expression by analyzing 

language generated from various storytelling prompts widely used in clinical and 

research-oriented speech-language pathology practices (e.g., the broken window story, 

the Cinderella story). We plan to include clinical populations in future behavioral studies  

in order to further characterize the relationship between various cognitive systems and 

discourse measures, including a broader range of lexical diversity indices in our analysis 

(McCarthy, 2005; McCarthy & Jarvis, 2010). As demonstrated here and in prior research 

examining the validity of MTLD as a length-invariant index of informativity (i.e., 

specifically, lexical diversity), different approaches to measuring the same construct can 

yield heterogenous effects across different levels of analysis. Eventually, the creation of a 

large database of such freely-available normative language measures has the potential to 

facilitate speech-language pathologists' screening and evaluation of discourse in both 

clinical and research practice. By applying machine learning methods to analyze 

discrepancies typical of discourse features in disordered vs. neurotypical populations, it is 
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possible than additional latent variables embedded in language may be observed, 

reported, and subsequently used in the early detection of disease. Providing the additional 

constraints of a theoretically motivated approach may reduce the amount of unaccounted-

for variability observed within and across discourse measures indexing various levels of 

language processing, thereby improving the degree of confidence in a given measure or 

proposed mechanism of language production and synthesis. 
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APPENDIX A 

CLEANING FUNCTIONS FOR SPOKEN AND WRITTEN ENGLISH CORPORA 

Figure A1: Spotify Podcast Dataset Cleaning Function (Spoken English) 

## ------- Write Cleaning Function ----  
clean_spot <- function(x) { 
  x <- tolower(x) 
  x <- gsub("\n", " ", x 
  x <-  gsub("(\\d)([a-zA-Z]{3,})", "\\1 \\2", x) # Separate any 
digit+alpha combination that has 3 or more letters after the number 
  x <-  gsub("(\\d)(st|nd|rd|th)", "\\1", x) #omits -rd, -rd from digits 
  x <- gsub("[0-9]{1,}", "", x) # remove all digits, regardless of where 
they occur 
  x <- gsub("(\\<[b-dB-Df-hF-Hj-nJ-Np-tP-Tv-xV-Xz-zZ-Z]{4,}[a-zA-Z]*)", 
"", x) # look for a string of non-consonants (a/e/i/o/u/y) of length 4 
or greater 
     # at the start of a string and replace the entire word (string) 
with nothing 
  x <- gsub("([a-zA-Z\\d])\\1\\1{1,}", "\\1", x) # remove any 
alphanumeric sequence that is three or more of the same consecutive 
letter, replace it with one 
  x <- gsub("-", " ", x) # replace dash with space 
  x <- gsub("`|´", "'", x)  # replaces tick marks with apostrophe for 
contractions 
  x <-  replace_contraction(x) 
  x <- tolower(x) # make replaced contractions lowercase 
  x <- gsub("#", " ", x) # remove hash marks 
  x <- gsub("°", " ", x) # remove degree sign 
  x <- gsub("[[:punct:]]+" , " ", x) # remove punctuation, replace with 
space 
  x <- gsub("\\b[b-hj-z]\\b{1}", " ", x) # remove alphabetic singletons 
except a or i 
  x <- x %>% stripWhitespace() 
  x <- x %>% stri_remove_empty() 
} 
 
 

Figure A2: Corpus of Contemporary American English Cleaning Function (Written 

English) 

clean_coca <- function(x) { 

  x <- tolower(x) 

  x <- gsub("[(].*?[)]", " ", x) # remove annotations 

  x <- gsub("[<].*?[>]", " ", x) # remove annotations 

  x <- gsub("\n", " ", x) 

  x <-  gsub("(\\d)([a-zA-Z]{3,})", "\\1 \\2", x)  # Separate any 
digit+alpha combination that has 3 or more letters after the number 
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  x <-  gsub("(\\d)(st|nd|rd|th)", "\\1", x)  #omits -rd, -rd from 
digits 

  x <- gsub("[0-9]{1,}", "", x) # remove all digits, regardless of 
where they occur 

  x <- gsub("(\\<[b-dB-Df-hF-Hj-nJ-Np-tP-Tv-xV-Xz-zZ-Z]{4,}[a-zA-Z]*)", 
"", x) # look for a string of non-consonants (a/e/i/o/u/y) of length 4 
or greater 

        # at the start of a string and replace the entire word (string) 
with nothing 

  x <- gsub("([a-zA-Z\\d])\\1\\1{1,}", "\\1", x) # remove any 
alphanumeric sequence that is three or more of the same consecutive 
letter, replace it with one 

  x <- gsub("-", " ", x) # replace dash with space 

  x <- gsub("`|´", "'", x)  # replaces tick marks with apostrophe for 
contractions 

  x <- gsub("n't", " not", x) # CONTRACTIONS1 

  x <- gsub("wo ", " will", x) # CONTRACTIONS2 

  x <- gsub("'ll", "will", x) # CONTRACTIONS3 

  x <- gsub("'ve", "have", x) # CONTRACTIONS4 

  x <- gsub("'re", "are", x) # CONTRACTIONS5 

  x <- gsub("'m", "am", x) # CONTRACTIONS6 

  x <- gsub(" '", "'", x) #remove space from front of floating ' 

  x <-  replace_contraction(x) 

  x <- tolower(x) # make replaced contractions lowercase 

  x <- gsub("[[:punct:]]+" , " ", x) # remove punctuation, replace with 
space 

  x <-  gsub("@", " ", x) #replace @ with space 

  x <- gsub("°", " ", x) # remove degree sign 

  x <- gsub("\\b[b-hj-z]\\b{1}", " ", x) # remove alphabetic singletons 
except a or i, replace with space 

  x <- x %>% stripWhitespace() 

  x <- x %>% stri_remove_empty() 

} 
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APPENDIX B 

WASSERSTEIN DISTANCES FOR SPOKEN VS. WRITTEN DISCOURSE 

MEASURES 

The Wasserstein distance is a metric widely used in statistics, computer science, 

and machine learning to estimate the minimum amount of work it would take to 

transform one distribution into another (Panaretos & Zemel, 2019; Schefzik et al., 2021). 

Recent evidence indicates that the Wasserstein distance provides a less-biased maximum 

likelihood estimate for power-law distributed data (e.g., word frequency) compared to 

other maximum likelihood estimates (Bernton et al., 2019; Clauset et al., 2009; Panaretos 

& Zemel, 2019; Pilgrim & Hills, 2021; Schefzik et al., 2021).  

An analogy used to illustrate Wasserstein distance (also called the earth mover’s 

distance) is that of people shoveling dirt between two mounds of earth until each mound 

exactly matches the other. The minimum amount of work expended to transform the dirt 

piles is indexed by the Wasserstein distance. The equation used to calculate the 

Wasserstein distance and its decomposition between two distributions FA and FB 

(Panaretos & Zemel, 2019; Schefzik et al., 2021) reads:  

𝑑 ≔ 𝑑(𝐹!, 𝐹") = ) |	𝐹!#$(𝑢) −	𝐹"#$(𝑢)|%d𝑢
$

&

 

																	= 	 (𝜇! − 𝜇")% + (𝜎! − 𝜎")% + 	2𝜎!𝜎"(1 − 𝜌!,") 

Here, rA,BÎ|0,1| measures differences in distribution shape (e.g., skewness) using the 

Pearson correlation coefficient of all points contained in the quantile-quantile plot of FA 

and FB. Differences in location are represented by (𝜇! − 𝜇")%, while differences in 

distribution size are measured using (𝜎! − 𝜎")%.  
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Table B1. Wasserstein Distance Decomposition Values for Discourse Measures 

 Distance Location Size Shape 
 

MTLD 1770  1680  35.5  55.4  

Shannon entropy 0.129 ( 0.0950  0.0289  0.00491  

Word Age of Acquisition 0.358  0.325  0.0224  0.0108  

Word Concreteness  0.0144  0.0112 0.00301 0.000120  

Word Frequency 1550000 1540000 460  9390  

Number of Letters per Word 0.412  0.393  0.0126  0.00636 

Phonemes per Word 0.356  0.337  0.0130  0.00585 

Word Count 40100000 2090000 16800000  21300000  

Note. MTLD = Measure of Textual Lexical Diversity. 

 



 

 102 

APPENDIX C 

ADDITIONAL LINEAR MIXED-EFFECTS MODELS 

Table C1. Linear mixed-effects model outputs for additional fixed effects predicting 

MTLD 

  MTLD + Trails  MTLD + NAART  MTLD + ART  MTLD + PPVT  
Predictors  Estimates

  CI  p  Estimates
  CI  p  Estimates

  CI  p  Estimates
  CI  p  

(Intercept)  41.30  37.25 
– 

45.35
  

<0.001
  

41.27  37.23 
– 

45.31
  

<0.001
  

41.25  37.20 
– 

45.31
  

<0.001
  

41.18  37.11 
– 

45.25
  

<0.001
  

Working 
MemoryR    

-0.95  -5.12 
– 

3.22  

0.654  -1.24  -5.71 
– 

3.23  

0.586  -0.29  -4.23 
– 

3.64  

0.883  -0.45  -4.35 
– 

3.44  

0.820  

ModalityW 10.39  7.80 
– 

12.97
  

<0.001
  

10.39  7.80 
– 

12.97
  

<0.001
  

10.39  7.80 
– 

12.97
  

<0.001
  

10.39  7.80 
– 

12.97
  

<0.001
  

Working 
MemoryR  
× 
ModalityW 

-3.04  -6.28 
– 

0.20  

0.066  -3.04  -6.28 
– 

0.20  

0.066  -3.04  -6.28 
– 

0.20  

0.066  -3.04  -6.28 
– 

0.20  

0.066  

Trails  -0.98  -3.96 
– 

2.00  

0.517                             

NAART        1.20  -2.17 
– 

4.57  

0.484              

ART              -0.64  -3.52 
– 

2.24  

0.662        

PPVT                    0.40  -2.48 
– 

3.28  

0.783  

Random Effects  
σ2  74.65  74.65  74.65  74.65  
τ00  34.41 participant  34.28 participant  34.85 participant  35.08 participant  
  6.36 prompt  6.36 prompt  6.36 prompt  6.36 prompt  
  0.33 prom_cat  0.33 prom_cat  0.34 prom_cat  0.34 prom_cat  
ICC  0.36  0.35  0.36  0.36  
N  23 participant  23 participant  23 participant  23 participant  
  4 prompt  4 prompt  4 prompt  4 prompt  
  2 prom_cat  2 prom_cat  2 prom_cat  2 prom_cat  
Observation
s  

184  184  184  184  
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Marginal R2 
/ Conditional 
R2  

0.199 / 0.483  0.200 / 0.483  0.196 / 0.483  0.194 / 0.483  

Note. WM = working memory; Working MemoryR  = Working memory measured by the Reading 
Complex Span Task; Working MemoryO  = Working memory measured by the Operation 
Complex Span Task; Working MemoryS  = Working memory measured by the Symbol Complex 
Span Task; prompt = prompt category (e.g., Broken Window, Cat Rescue, Cinderella, Snack 
Attack); prom_cat = prompt category (e.g., expositional vs. storytelling).  
 
Table C2. Linear mixed-effects model outputs for additional fixed effects predicting 

Shannon entropy  

   Shannon entropy +   
Trails  

Shannon entropy +   
NAART  

Shannon entropy +   
ART  

Shannon entropy +   
PPVT  

Predictors  Estimates
  CI  p  Estimates

  CI  p  Estimates
  CI  p  Estimates

  CI  p  
(Intercept)  4.31  3.89 

– 
4.72

  

<0.001
  

4.31  3.89 
– 

4.72
  

<0.001
  

4.30  3.89 
– 

4.72
  

<0.001
  

4.30  3.88 
– 

4.71
  

<0.001
  

Working 
MemoryR    

-0.17  -
0.29 
– -

0.05
  

0.005  -0.19  -
0.31 
– -

0.06
  

0.003  -0.15  -
0.27 
– -

0.04
  

0.007  -0.15  -
0.26 
– -

0.05
  

0.005  

ModalityW -0.12  -
0.18 
– -

0.06
  

<0.001
  

-0.12  -
0.18 
– -

0.06
  

<0.001
  

-0.12  -
0.18 
– -

0.06
  

<0.001
  

-0.12  -
0.18 
– -

0.06
  

<0.001
  

Working 
MemoryR    
× ModalityW 

0.01  -
0.07 

– 
0.09

  

0.827  0.01  -
0.07 

– 
0.09

  

0.827  0.01  -
0.07 

– 
0.09

  

0.827  0.01  -
0.07 

– 
0.09

  

0.827  

Trails  -0.04  -
0.13 

– 
0.05

  

0.360                             

NAART         0.06  -
0.04 

– 
0.16

  

0.224              

ART              0.02  -
0.06 

– 
0.10

  

0.621        

PPVT                    0.07  -
0.01 

0.086  
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– 
0.15

  
Random Effects  
σ2  0.04  0.04  0.04  0.04  
τ00  0.03 participant  0.03 participant  0.03 participant  0.03 participant  
  0.01 prompt  0.01 prompt  0.01 prompt  0.01 prompt  
  0.08 prom_cat  0.08 prom_cat  0.08 prom_cat  0.08 prom_cat  
ICC  0.74  0.73  0.74  0.73  
N  2 prom_cat  2 prom_cat  2 prom_cat  2 prom_cat  
  23 participant  23 participant  23 participant  23 participant  
  4 prompt  4 prompt  4 prompt  4 prompt  
Observations  184  184  184  184  
Marginal R2 / 
Conditional 
R2  

0.096 / 0.761  0.101 / 0.761  0.091 / 0.761  0.112 / 0.761  

Note. WM = working memory; Working MemoryR  = Working memory measured by the 
Reading Complex Span Task; Working MemoryO  = Working memory measured by the 
Operation Complex Span Task; Working MemoryS  = Working memory measured by the 
Symbol Complex Span Task; prompt = prompt category (e.g., Broken Window, Cat Rescue, 
Cinderella, Snack Attack); prom_cat = prompt category (e.g., expositional vs. storytelling).  
 
 


