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Abstract

Discourse is a fundamentally important aspect of communication, and discourse 
production provides a wealth of information about linguistic ability. Aphasia commonly 
affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia 
assessments such as the Western Aphasia Battery are time- and resource-intensive. 
We examined whether discourse measures can be used to assess aphasia severity, 
and whether this can serve as an ecologically valid, less resource-intensive measure. 
We used lexical features extracted from discourse tasks using three AphasiaBank 
prompts involving picture description, story narrative, and procedural discourse. These 
features were used to train a machine learning model to predict the Aphasia Quotient. 
We also compared and supplemented the model with lesion location information from 
structural neuroimaging. We found that discourse-based models could estimate aphasia 
severity well, and that they outperformed models based on lesion features. Addition of 
lesion features to the discourse features did not improve the performance of the 
discourse model substantially. Inspection of the most informative discourse features 
revealed that different prompt types taxed different aspects of language. These findings 
suggest that discourse can be used to estimate aphasia severity, and provide insight 
into the linguistic content elicited by different types of discourse prompts.
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1. Introduction

Brain injury via stroke or neurodegenerative disease can often result in aphasia, defined 
as impaired language and communication. Aphasia can lead to significant declines in 
quality of life and well-being (Bullier et al., 2020; Spaccavento et al., 2014), as the ability 
to communicate effectively is vital for interpersonal relationships, employment, and 
navigating the world. A major part of this decline can be related to impairments in 
spoken discourse (Galski, Tompkins, & Johnston, 1998). Spoken discourse provides a 
wealth of information about linguistic ability that is related to aphasia severity. Hence, 
evaluation of discourse in persons with aphasia has gained increasing recognition for 
clinical assessment and treatment (Bryant, Ferguson, & Spencer, 2016a; Stark & 
Fukuyama, 2021). The majority of current aphasia assessments, such as the Western 
Aphasia Battery (WAB; (Kertesz, 1982, 2007)) are rigorous but relatively demanding 
standardized tests that can be burdensome for survivors of stroke, their families, and 
clinicians. In the United States, it is often difficult for people to even be approved or 
financially supported for comprehensive baseline language evaluations post-stroke 
(Walker et al., 2022). Hence, supplementary assessments that are brief but comparable 
can be valuable. If reliable, such assessments could be used for triage purposes, 
measuring change in language abilities over time, or for individuals who have limited 
access to healthcare resources (e.g., rural or impoverished). In this context, discourse 
analysis is a promising line of research, given the rich set of microstructural (lexical-
semantic, syntactic) and macrostructural (cohesion, coherence) elements in discourse.

Compared to a multi-hour standardized test, eliciting discourse is more tractable for a 
non-specialist, thanks to resources such as AphasiaBank (Fromm, Forbes, Holland, & 
MacWhinney, 2020; Macwhinney, Fromm, Forbes, & Holland, 2011). Tasks include a 
description of a sequence of pictures (Broken Window), narrative discourse without 
visual aids (‘tell me the story of Cinderella’), and procedural (‘tell me how to make a 
peanut butter and jelly sandwich). The tasks are brief (< 5 minutes) and data collection 
could be done remotely via mobile phone applications or wearable monitors. The 
prompts allow for more continuous and naturalistic output than other language 
assessments such as confrontation naming, sentence-picture matching, or production of 
isolated sentences. The variety of prompts (e.g., picture description vs. procedural) also 
allows for the inspection of relationships between linguistic and more domain-general 
cognitive processes such as procedural or episodic memory (Stark, 2019). These 
unique demands mean that discourse samples can measure language loss or recovery 
in a more naturalistic way than long-form standardized tests (Bryant, Ferguson, & 
Spencer, 2016b). The most time-intensive aspect of discourse analysis is transcription 
and coding, requiring 6-12 minutes of time per minute of collected discourse (Boyles, 
1998). However, recent advances in computerized transcription and natural language 
processing are likely to aid automated transcription and coding in the coming years (S. 
G. Dalton et al., 2022; Jacks, Haley, Bishop, & Harmon, 2019). Some work has been 
done to develop at-home aphasia screenings such as the mobile aphasia screening test 
(Choi, Park, Ahn, Son, & Paik, 2015) or others designed for detection of paraphasia (Le, 
Licata, & Provost, 2017) or primary progressive aphasia (PPA; (Fraser et al., 2014)). 
However, these have largely been designed with the binary goal of detecting the 
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presence or absence of aphasia or classifying subtypes of PPA, instead of assessing 
the entire range of aphasia severity.

There is a growing body of research that uses discourse as an outcome measure of 
therapy (Bryant et al., 2016b), usually focusing on macro-level measures of fluency or 
information content. However, there are relatively few studies that address how the 
multitude of linguistic features elicited by discourse map onto aphasia severity. Some 
work has been done to investigate higher-level conceptual properties (macrostructure) 
of spoken discourse, such as main concept production and informativeness metrics. 
These studies have found that people with aphasia tend to produce less informative 
speech and that different aphasia subtypes have differing levels of main concept 
production (S. G. H. Dalton & Richardson, 2019). Other work has focused more on 
discourse microstructure. For example, Stark (2019) quantitatively established that the 
different discourse prompt types (e.g., picture description, narrative, and procedural) 
tend to tax different aspects of the language system in both controls and people with 
aphasia. For example, narrative discourse was found to elicit the most content-rich 
speech. Procedural discourse, on the other hand, elicited the lowest syntactic 
complexity. These findings suggest that using multiple prompt types may be important 
for discourse-based language assessment (see also Stark and Fukuyama (2021)). 
However, the vast majority of studies that have used discourse as an outcome measure 
have used a picture description prompt (Bryant et al., 2016b). Another difficulty of using 
discourse analysis is the complex, multidimensional, and collinear relationships 
between microstructural variables and overall language ability. For this reason, 
dimension reduction, multivariate, or machine learning methods may be well-suited for 
discourse analysis over traditional univariate methods (Stark & Fukuyama, 2021).

Here, we used picture-based, narrative, and procedural discourse tasks in a group of 71 
stroke survivors with available structural neuroimaging scans. Our first aim was to 
quantitatively establish whether microstructural discourse analysis can accurately 
capture aphasia severity, as measured by the WAB Aphasia Quotient (AQ). A second 
aim was to determine if the three prompt types differed in elicitation of discourse 
features that predict AQ, and which features were the most predictive in each case. 
Previous research suggests that narrative discourse may be the most promising (Stark, 
2019), but picture-based prompts are the most common discourse measure used in 
clinical studies (Bryant et al., 2016b). Finally, we examined how the inclusion of lesion 
features impacts model performance. We used Support Vector Regression (SVR) to 
predict AQ and assess feature importance. 

2. Materials and Methods

2.1 Participants

Speech recordings were obtained from 71 unilateral left-hemisphere chronic (>12 
months post-stroke, mean = 60 months, range = 12 – 237) stroke survivors by the 
Center for Study of Aphasia Recovery (C-STAR), as part of a multi-day data collection 
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battery (see Spell et al. (2020)). Participants were a mean of 61.7 years old (range = 29 
– 80). This battery included structural and functional neuroimaging, administration of the 
WAB by licensed speech-language pathologists, discourse collection, and other 
cognitive and language testing. Mean WAB score was 65.9 (range = 14.5 – 100). 
Among these participants, 10 did not suffer from aphasia, while the rest had different 
types of aphasia: Broca’s (28), Anomic (14), Conduction (11), Global (4), Wernicke’s 
(3), and Transcortical Motor (1). All participants signed informed consent, and the 
research was approved by the University of South Carolina Institutional Review Board.

2.2 Behavioral Data

At intake, each participant was prompted by a clinician to narrate the Cinderella story, 
describe how to make a peanut butter and jelly (PBJ) sandwich, and explain the 
sequence of events shown a picture, referred to as Broken Window, according to 
AphasiaBank prompt directions (Macwhinney et al., 2011). Their discourse was video 
recorded. Videos were manually transcribed and coded by trained research assistants 
under the supervision of licensed speech language pathologists (for full details and 
reliability metrics, see Spell et al. (2020)). Using Computerized Language Analysis 
software (MacWhinney, 2000), various discourse features, as shown in Table 1 were 
extracted.

2.3 MRI data acquisition and preprocessing

MRI data were obtained with a Siemens 3T Trio System with a 12-channel head coil 
and a Siemens 3T Prisma System with a 20-channel coil. Participants underwent two 
anatomical MRI sequences: (i) T1-weighted imaging sequence with a magnetization-
prepared rapid-gradient echo (MPRAGE) turbo field echo (TFE) sequence with voxel 
size = 1 mm3, field of view (FOV) = 256 × 256 mm, 192 sagittal slices, 9° flip angle, 
repetition time (TR) = 2,250 ms, inversion time (TI) = 925 ms, echo time (TE) = 4.15 ms, 
generalized autocalibrating partial parallel acquisition (GRAPPA) = 2, and 80 reference 
lines; and (ii) T2-weighted MRI with a 3D sampling perfection with application optimized 
contrasts by using different flip angle evolutions protocol with the following parameters: 
voxel size = 1 mm3, FOV = 256 × 256 mm, 160 sagittal slices, variable flip angle, TR = 
3,200 ms, TE = 212 ms, and no slice acceleration. The same slice center and 
angulation were used as in the T1 sequence. 

Lesions were defined in native space by a neurologist in MRIcron (Rorden, Bonilha, 
Fridriksson, Bender, & Karnath, 2012) on individual T2-weighted images. Preprocessing 
started with coregistration of the T2-weighted images to match the T-weighted images, 
allowing the lesions to be aligned to native T1 space. Images were warped to standard 
space using enantiomorphic (Nachev, Coulthard, Jager, Kennard, & Husain, 2008) 
segmentation-normalization (Ashburner & Friston, 2005) custom Matlab script 
(https://github.com/rordenlab/spmScripts/blob/master/nii_enat_norm.m) to warp images 
to an age-appropriate template image found in the Clinical Toolbox for SPM 
(https://www.nitrc.org/scm/?group_id=881). The normalization parameters were used to 
reslice the lesion into standard space using linear interpolation, with subsequent lesion 
maps stored at 1 × 1 × 1-mm resolution and binarized using a 50% threshold. (Because 
interpolation can lead to fractional probabilities, this step confirms that each voxel is 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4500578

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://github.com/rordenlab/spmScripts/blob/master/nii_enat_norm.m
https://www.nitrc.org/scm/?group_id=881


categorically either lesioned or unlesioned without biasing overall lesion volume.) 
Normalized images were visually inspected to verify quality.

2.4 Lesion feature extraction

The resulting images were parcellated according to the Johns Hopkins University atlas 
(Faria et al., 2012; Mori, Wakana, Van Zijl, & Nagae-Poetscher, 2005; Wakana, Jiang, 
Nagae-Poetscher, van Zijl, & Mori, 2004). For each participant, the percent of voxels 
damaged within each of these regions was calculated, and areas that were undamaged 
in all participants were removed from further analysis, resulting in 64 lesion features 
considered in this study (Supplementary Materials).

Table 1 The list of discourse features extracted for each of the prompts. The last 
16 features starting from Nouns to WordErrors are included as both absolute numbers 
and relative percentages, amounting to a total of 45 discourse features per prompt.

Name Description
Duration Total duration of discourse (sec)
Total Utts Total utterances
MLU Utts Total #utterances for calculating MLU below
MLU Words Mean number of words per utterance
MLU Morphs Mean number of morphemes per utterance
FreqTypes Number of word types used
FreqTokens Number of unique words used
FreqTTR Ratio of types to tokens
Words/Min Words per minute
Verbs/Utt Number of verbs per utterance
Density Propositional idea density
Retracing Number of self-corrections during speech
Repetition Number of word repetitions
Nouns Words that were nouns
Prep Words that were prepositions
Adj Words that were adjectives
Adv Words that were adverbs
Conj Words that were conjunctions
Det/Art Words that were determiners or articles
Pro Words that were pronouns
Aux Words that were auxiliaries
Verbs Words that were verbs
3S Verbs that were 3rd person singular
1S/3S Verbs with same form for first/third person
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Name Description
Past Verbs that were past tense
PastPart Verbs that were past participles
PresPart Verbs that were present participles
Plurals Nouns that were plural
WordErrors Words that had some sort of error

Our goal was to predict the AQ of a participant based on their discourse and/or lesion 
features with the help of machine learning. Two key design choices in developing a 
machine learning system are the learning algorithm and the feature set. We chose 
linear Support Vector Machines (SVM) which is a popular machine learning method that 
is known to perform well on relatively small datasets, (Mahmoud et al. 2021) and is 
resistant to overfitting. An appropriate subset of given features was selected through 
recursive feature elimination and cross-validation. Specifically, we used leave-one-out 
(LOO) to split the participants into a set of 70 for training and 1 for testing. Using the 70 
samples in the training set, all the features were ranked using recursive feature 
elimination. We then selected a combination of top features through cross-validation as 
follows. By employing LOO again, the training set of 70 samples was further split into 69 
for training and 1 for validation. By training the SVM on the 69 samples, we predicted 
the AQ for the one in the validation set. This is done 70 times with each participant in 
the validation set once. The predicted AQ values were compared against the true AQ 
values to compute an 𝑅2 score. This process was repeated for each combination of top-
k features, with k limited to 10. When the features are highly correlated, as in the current 
study, a feature set close to the square root of the sample size is often ideal for SVM 
(Hua, Xiong, Lowey, Suh, & Dougherty, 2005), and the inclusion of too many features in 
a relatively small sample can lead to overfitting. The feature combination with the 
highest 𝑅2 score was then used to train the model with 70 samples to predict the AQ for 
the one in the test set. We capped predicted AQ values at 100, and set the minimum to 
20. Observed AQs below 20 are exceedingly rare in clinical studies (Walker et al., 
2022), and differences in numerical AQ below this cutoff are unlikely to be clinically 
relevant. This process was repeated with each participant in the test set once. Note that 
with this procedure, we avoid ‘peeking’, and no information about the left-out participant 
is used for feature selection. We then computed Pearson’s correlation (r), root mean 
squared error (RMSE), and mean absolute error (MAE) between predicted AQ and 
observed AQ to evaluate estimation accuracy. The SVM model uses a hyper-parameter 
C for regularization. We varied C from 0.01 to 100 and chose the C that yielded the 
highest correlation coefficient.

We conducted analyses with (1) Discourse features only from each of the three prompts 
individually, and the combined set of features from the three prompts, (2) Lesion 
features combined the discourse features in (1), and (3) lesion features only.
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3. Results

Table 2 and Figures 1-3 summarize the results. For each prompt, and for all sets of 
features (discourse only, discourse+lesion, lesion only), the correlation between 
predicted and actual AQ was significant (all p’s < 0.001, Pearson’s r range 0.64 – 0.83). 

Table 2 Results summary for predicted AQ compared to observed AQ for each 
model.

Prompt Discourse Discourse + Lesion Lesion Only
Broken Window r = 0.78

RMSE = 14.63
MAE = 11.50

r = 0.79
RMSE = 14.59
MAE = 10.94

~

Cinderella r = 0.75
RMSE = 15.50
MAE = 12.14

r = 0.83
RMSE = 12.94

MAE = 9.53

~

PBJ r = 0.7
RMSE = 16.75
MAE = 13.47

r = 0.72
RMSE = 16.56
MAE = 12.95

~

All Combined r = 0.83
RMSE = 13.09

MAE = 9.77

r = 0.82
RMSE = 13.29
MAE = 10.03

r = 0.64
RMSE = 18.53
MAE = 14.69
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Figure 1 AQ prediction using only discourse features; A) Broken Window, B) 
Cinderella, C) PBJ, and D) all features combined.

We used a two-tailed Hotelling’s t-test for dependent correlations (Weiss, 2011) to 
examine whether any of the models were significantly better at predicting AQ. This test 
compares the Pearson’s r between predicted and observed AQ for a given pair of 
models (e.g., Cinderella vs. Broken Window), while considering that the values come 
from the same group of participants. All features combined was trending towards more 
accurate predicted AQs than Cinderella (t(68) = -1.905, p = 0.06), and all features 
combined was significantly better than PBJ (t(68) = 2.89, p = .005). No other pairwise 
tests were significant or trending.
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Figure 2 AQ prediction using discourse plus lesion features

When lesion features were added to discourse features, the performance for 
BrokenWindow, PBJ, and all features combined was not altered significantly. However, 
lesion features significantly boosted the performance of Cinderella, as determined by a 
Hotelling’s t-test for dependent correlations (t(68) = -2.05, p = .04).
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Figure 3 AQ prediction using only lesion features.

The lesion-feature only model was significantly outperformed by all models except for 
PBJ (with or without lesion) and Cinderella without lesion features (all p’s < .05).
We also calculated the 10 most informative features for each model (Table 3). 
Inspecting these features allows us to examine how informative linguistic features 
change depending on the prompt type.
Table 3 Top 10 features for each model. In parenthesis, the first number is the 
percent of times that feature was chosen as a top 10 (across 71 LOO cross validation 
folds), and the second number is the median rank that feature had. E.g., FreqTypes 
(100, 1) means that the number of different types of words used was a top 10 feature 
100% of the time and had a median importance rank of #1.

Broken 
Window Cinderella PBJ

All Prompts 
Combined

FreqTypes 
(100, 2)

FreqTypes (100, 1) % Prep (100, 1) % Prep-PBJ 
(100, 2)

# WordErrors 
(100, 3)

% PastPart (100, 2) MLU Morphs (100, 2) # WordErrors-
BW (82, 3)

# Adv (100, 3) % Past (100, 3) # Prep (100, 5) # Nouns-BW 
(70, 1)

Density (100, 
4)

% Nouns (100, 4) % 3S (100, 8) % Nouns-Cind 
(70, 6)

MLU Utts (86, 
7)

% PresPart (97, 6) # Nouns (99, 3) % Conj-BW (66, 
9)

# Nouns (83, 
7)

Words/Min (92, 5) Words/Min (99, 6) MLU Utts-BW 
(59, 7)

% Det/Art (72, 
5)

# Repetition (85, 9) % Nouns (94, 6) % Past-BW (51, 
10)
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Broken 
Window Cinderella PBJ

All Prompts 
Combined

# Adj (62, 8) % Det/Art (80, 8) MLU Words (77, 6) % Det/Art-PBJ 
(48, 10)

% Conj (54, 9) # PresPart (70, 7) Verbs/Utt (49, 10) MLU Utts-Cind 
(38, 12)

% Nouns (34, 
13)

MLU Morphs (56, 10) % Past (49, 10) % Det/Art-BW 
(34, 14)

Lesion Only + Broken 
Window

+ Cinderella + PBJ + All Prompts 
Combined

SLF (100, 1) # Nouns (100, 
1)

% Nouns (100, 
3)

SLF (100, 1) % Nouns-Cind 
(100, 4)

EC (100, 2) SLF (100, 2) % PastPart 
(100, 4)

MLU Morphs 
(100, 2)

FreqTypes-Cind 
(99, 2)

MOG (100, 3) # WordErrors 
(100, 3)

FreqTypes 
(97, 1)

% Prep (100, 
3)

% Prep-PBJ (97, 
3)

SCC (99, 4) Density (100, 
4)

MFOG (97, 5) # Nouns (100, 
4)

SLF (94, 1)

FUG (99, 5) % WordErrors 
(100, 7)

SLF (90, 2) MOG (100, 8) PSTG (72, 8)

BCC (79, 10) EC (99, 5) % Past (89, 8) RLIC (99, 7) # WordErrors-
BW (61, 6)

RLIC (77, 6) # Repetition 
(93, 9)

% Det/Art (87, 
6)

Words/Min 
(97, 6)

# Nouns-BW 
(61, 8)

SCR (77, 9) % Det/Art (80, 
6)

PSTG (85, 7) MLU Words 
(97, 8)

MFOG (54, 9)

LF (75, 8) PSTG (54, 10) CAUD (59, 9) % WordErrors 
(96, 6)

% Past-Cind 
(51, 10)

MFOG (68, 7) IFO (52, 10) # WordErrors 
(30, 11)

# Prep (39, 10) % Det/Art-BW 
(25, 18)

4. Discussion

Here, we used linguistic features extracted from discourse analysis to quantify aphasia 
severity. Using only microstructural (i.e., lexical and grammatical) features, we were 
able to build models that provided person-specific aphasia severity estimates, with 
predicted AQ scores being significantly correlated with observed AQ. We also 
investigated which discourse or lesion features are most predictive of AQ. From these 
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top features, we can draw conclusions about: 1) which linguistic (or lesion) features are 
most important for estimating aphasia severity, and 2) differences in how the language 
system is taxed by different prompt types.

4.1 Prompt types and discourse features

Using only discourse features, Broken Window had the highest prediction accuracy, 
while PBJ was numerically worse. Although this difference was not significant, it aligns 
well with the findings of Stark (2019), who suggested that PBJ has lower syntactic 
demands than narrative or picture description tasks, even when inspecting discourse 
output from healthy adults. These lower demands may result in not adequately taxing 
certain syntactic aspects of language, especially related to verb production, that are 
captured by AQ and other discourse tasks. The top features for the PBJ model 
demonstrate that it captures somewhat different linguistic properties than Broken 
Window and Cinderella, especially related to the use of prepositions, which turned out 
to be the only feature selected 100% of the time when combining all discourse features 
into a single model. This result is consistent with Stark and Fukuyama (2021), who 
found that prepositions were one of the main features that separated PBJ from other 
prompt types when examining discourse output using between-class analysis, a 
dimension reduction technique. Although not explicitly tested here, these unique 
prepositional demands may be especially useful in evaluating agrammatic people who 
are able to use content, but not function, words. The WAB, especially in its fluency 
subscores, sometimes has difficulty appropriately evaluating agrammatic people who 
can respond to prompts with simple noun-verb phrases. This results in low inter-rater 
reliability for this subtest, with nonfluent people sometimes obtaining inflated fluency 
scores (Clough & Gordon, 2020; Trupe, 1984).

Some patterns emerged relating to the task demands of picture sequence description in 
the Broken Window prompt. First, the total number of different word types used was the 
most important feature, demonstrating that it encourages participants to display their 
general mastery of language by eliciting the use of different types of words (S. G. Dalton 
& Richardson, 2015). This is perhaps also reflected in the importance of the adverbs 
feature, as adverbs are not ‘necessary’ per-se when describing a sequence of pictures. 
Instead, using more adverbs likely reflects an optional level of specificity that measures 
linguistic competence (Sarno, Postman, Cho, & Norman, 2005), thus aiding model 
prediction. Propositional density – a measure of content richness - being chosen in 
100% of Broken Window models was somewhat surprising, as past research has shown 
that picture description tasks elicit the lowest amount of content richness of the 3 task 
types (Stark, 2019), even in healthy adults. However, its inclusion in the model suggests 
that, while picture description may not elicit particularly rich content, its presence in an 
individual person’s discourse sample provides information about their aphasia severity. 
Finally, word errors were also important for Broken Window models, reflecting the 
naming processes elicited by picture description tasks (e.g., naming various objects or 
characters in the picture, also called a core lexicon (S. G. Dalton & Richardson, 2015)).

Similar to Broken Window, the most important feature elicited by Cinderella for 
predicting AQ was the number of different word types used. However, results suggest 
that the usage of the past tense is what separates Cinderella from the other prompt 
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types, with past tense and past participle use being among the most important features 
for predicting AQ in Cinderella-based models. Several studies have found that 
production and comprehension of past tense can be especially difficult for people with 
aphasia (Faroqi-Shah & Friedman, 2015; Jonkers & de Bruin, 2009; Ullman et al., 
2005). Cinderella, a narrative recall task, forces participants to use the past tense in 
their retelling of the Cinderella story, while Broken Window and PBJ can be completed 
using the present tense. 

The findings demonstrate that, while each prompt can be used to predict AQ, the top 
ten features differ – providing insights about the unique linguistic demands of each 
prompt type. Indeed, combining all features from all prompts into a single model yielded 
numerically the highest AQ prediction accuracy, suggesting that the prompts make 
unique contributions to aphasia severity estimation. However, this comes with the 
drawback that there is less consistency among the top ten features chosen (evidenced 
by lower percentages and more variable median ranks for the top ten features), due to 
the expanded feature selection space. This could be ameliorated by simply using each 
discourse model individually, and then averaging the predicted AQ’s together for each 
participant. This maintains top ten feature consistency from each prompt type, while 
also allowing each prompt to contribute to prediction.

4.2 Lesion features and aphasia severity

We also investigated the relative importance of the lesion features in AQ assessment. 
The superior longitudinal fasciculus (SLF) was the most frequently selected top ranked 
feature when only lesion features was used. Moreover, SLF is among the most 
frequently selected top two features even in the discourse plus lesion models. The SLF 
is a white matter tract that connects portions of the occipital, posterior temporal, and 
parietal lobes to the frontal cortex (Bernal & Altman, 2010; Kamali, Flanders, Brody, 
Hunter, & Hasan, 2014). Our finding that the SLF is an important feature for predicting 
aphasia severity aligns with previous research demonstrating that degradation of the 
SLF in a variety of etiologies has been linked to impaired language or executive abilities 
that contribute to language (Madhavan, McQueeny, Howe, Shear, & Szaflarski, 2014; 
Nagae et al., 2012; Rizio & Diaz, 2016; Shinoura et al., 2013).

The other features chosen 100% of the time as a top 10 feature in the lesion-only 
model, the external capsule (EC) and middle occipital gyrus (MOG), are somewhat 
surprising as they are not considered classic ‘language areas’ in most neurobiological 
models (Desai & Riccardi, 2021; G. Hickok & Poeppel, 2004). However, EC integrity 
has been implicated in executive dysfunction (Nolze-Charron et al., 2020), and is 
considered by some to be a part of the ventral language stream (Axer, Klingner, & 
Prescher, 2013), although this is debated. EC tracts are also adjacent to portions of SLF 
(Schmahmann, Schmahmann, & Pandya, 2009), raising the possibility that these two 
pathways are commonly damaged together in stroke affecting the middle cerebral 
artery. It is also possible that the EC contributes to language via subcortical connections 
that support language either directly or through domain-general processes (Kuljic-
Obradovic, 2003; Sharif, Goldberg, Walker, Hillis, & Meier, 2022). The MOG, on the 
other hand, may be related to visual identification of items and objects near the 
‘beginning’ of the ventral language stream (Fridriksson et al., 2016; G. Hickok & 
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Poeppel, 2004; Gregory Hickok & Poeppel, 2016). People with MOG damage likely 
perform poorly on visual aspects of the WAB such as object naming or picture 
description, making it an informative feature when predicting aphasia severity.

While it is somewhat surprising that adding lesion features to the discourse models did 
not boost accuracy of aphasia severity estimation, it demonstrates the effectiveness of 
discourse task in estimating AQ. The discourse prompts require many of the same 
language skills that are measured by WAB (indeed, WAB even includes a picture 
description task), which was sufficient for discourse tasks to have a high predictive 
value. Lesion features, on the other hand, are comparatively more ‘indirect’ 
representatives of language ability. When considering future use of discourse features 
to estimate aphasia severity, it is a net positive that lesion features do not contribute 
significantly above and beyond discourse features. If discourse features alone could not 
estimate aphasia severity and MRI scans were required, then it would negate the 
advantage of the discourse method as less demanding in terms of resources.

4.3 Limitations and future directions

Here, our focus was on using purely microlinguistic discourse features to estimate 
aphasia severity. A promising extension may be to investigate how adding macro-level 
features such as main concept analysis or demographic features could boost model 
prediction (Johnson et al., 2022). Regarding anatomical features, it is possible that other 
measures of brain health, such as resting state connectivity (Kristinsson et al., 2021) or 
brain age (Busby et al., 2023; Kristinsson et al., 2022) could also be useful estimators of 
aphasia severity. Furthermore, clinical use of discourse-based aphasia severity 
estimation relies on improved automation of transcription and coding of impaired speech 
in the coming years, as current automated transcription methods perform relatively 
poorly in people with aphasia (Mahmoud et al., 2023). Future work could also 
investigate how, instead of prompts, other naturalistic discourse paradigms could be 
used to assess language abilities and their neural correlates (Birba et al., 2022; Riccardi 
& Desai, 2022). Finally, in the current study, even though the prediction was accurate 
overall with the Pearson’s correlation between measured and predicted AQ near 0.8, 
and the models were highly accurate for majority of the participants, they were relatively 
inaccurate for a handful of cases. Understanding the characteristics of individuals that 
lead to lower model prediction performance may help improve models even further.

5. Conclusion

The present study showed that microlinguistic features elicited from three AphasiaBank 
discourse prompts can be used to estimate aphasia severity. Even a single prompt, 
containing only a few minutes (or sometimes less than a minute) of speech output, was 
sufficient to estimate AQ reasonably well for most individuals. Each prompt elicited 
different informative features, demonstrating potential differences between prompts. 
Lesion features can also be used to estimate aphasia severity, although with lower 
accuracy than the discourse-based models. An important role for superior longitudinal 
fasciculus integrity in aphasia severity is suggested. Discourse-based aphasia severity 
estimation is promising as a supplemental language measurement that is ecologically 
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valid and less resource-intensive. The current study provides important first steps 
towards mapping how discourse features can quantify aphasia severity.
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