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Clinical efficacy of pre‑trained large 
language models through the lens 
of aphasia
Yan Cong 1*, Arianna N. LaCroix 2 & Jiyeon Lee 2

The rapid development of large language models (LLMs) motivates us to explore how such 
state‑of‑the‑art natural language processing systems can inform aphasia research. What kind of 
language indices can we derive from a pre‑trained LLM? How do they differ from or relate to the 
existing language features in aphasia? To what extent can LLMs serve as an interpretable and 
effective diagnostic and measurement tool in a clinical context? To investigate these questions, we 
constructed predictive and correlational models, which utilize mean surprisals from LLMs as predictor 
variables. Using AphasiaBank archived data, we validated our models’ efficacy in aphasia diagnosis, 
measurement, and prediction. Our finding is that LLMs‑surprisals can effectively detect the presence 
of aphasia and different natures of the disorder, LLMs in conjunction with the existing language 
indices improve models’ efficacy in subtyping aphasia, and LLMs‑surprisals can capture common 
agrammatic deficits at both word and sentence level. Overall, LLMs have potential to advance 
automatic and precise aphasia prediction. A natural language processing pipeline can be greatly 
benefitted from integrating LLMs, enabling us to refine models of existing language disorders, such as 
aphasia.

The advent of Large Language Models (LLMs) such as ChatGPT is progressively reshaping the landscape of clini-
cal natural language processing (NLP)  reserach1–8. These models often surpass previous NLP benchmarks, likely 
because they share computational principles with human language  processing9. LLMs have shown the potential 
to predict, diagnose, and measure language disorders in persons with  psychosis8 and  dementia10. Yet, there is a 
limited understanding of the potential contributions and advancements that LLMs could bring to diagnosing 
language disorders such as aphasia. We aim to bridge this gap.

Aphasia is most often caused by a left hemisphere stroke. Aphasia impacts both language production and 
comprehension, making it challenging for persons with aphasia to communicate effectively and navigate daily 
life. Aphasia diagnosis involves comprehensive assessments by speech-language pathologists (SLP). The diagnosis 
typically relies on standardized tests such as the Western Aphasia Battery-Revised (WAB-R,  Kertesz11), which 
includes paper–pencil tasks that generate accuracy scores on structured language tasks (e.g., picture description, 
object naming, repeating words and phrases). Collecting and analyzing a discourse sample of natural language 
production is a critical component to the diagnosis of aphasia, as they reveal specific impairments in speech 
fluency, grammar usage, word finding, and semantic coherence, above and beyond binary accuracy scoring. How-
ever, SLPs rarely incorporate quantitative discourse indices into clinical management of persons with  aphasia12,13 
because of time constraints and a lack of sufficient skills in how to quantitatively analyze discourse samples.

As such, developing automated programs for analyzing the natural speech of persons with aphasia has been a 
recent focus in clinical research. For example, a computerized language analysis software, CLAN (Computerized 
Language Analysis) has been developed to assess spoken discourse in persons with  aphasia12–18. Software such as 
CLAN has the potential to facilitate clinical research and practice, since the coding and analysis can be (semi-)
automated. However, this software appears to be used minimally among practicing SLPs as CLAN transcripts 
requires manually coding using a specific format for each analysis. These elaborate annotations can be tedious and 
lack consistency. Clinicians therefore need more streamlined and less resource intensive pipelines for discourse 
analysis, a gap LLMs can potentially fill.

LLMs have led to significant breakthroughs in NLP that may increase the feasibility of their clinical use. Puro-
hit et al.19 explored ChatGPT in a qualitative text analysis, showcasing how prompt engineering can be used for 
word retrieval in aphasia. Salem et al.20 fine-tuned a LLM in Zaheer et al.21 to quantitatively predict paraphasic 
errors in speech produced by persons with aphasia. Ortiz-Perez et al.22 and Sanguedolce et al.23 both showed 
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that OpenAI’s Whisper can be used in automatic speech recognition and transcription in aphasia. However, 
how to integrate recent LLMs into an NLP pipeline to automatically measure language deficits in persons with 
aphasia is understudied.

The recent literature in NLP and LLMs more broadly shows increased interest in surprisals, an index of nega-
tive log-probability of the occurrence of words in an utterance given preceding  context24–30. In natural speech, 
speakers constantly select and assemble words in a linear order following language-specific rules. Because both 
lexical and grammatical properties of the context can influence the probability of the occurrence of the upcom-
ing word, surprisals can be a useful metric to capture both word-level and structure-level impairments that are 
common in many persons with  aphasia5. As illustrated in examples (1–3), each word’s surprisal is computed by 
GPT2 based on previous words. The whole utterance’s surprisal is the summation of all the words’ surprisals, 
divided by utterance length. With an utterance produced by a person in the healthy control group (example 1), 
GPT2 output a low surprisal score. By contrast, example (2) has a same-length utterance produced by a person 
with aphasia. Because the main lexical verb in (2) is missing after let’s, this utterance yields a high surprisal score. 
Similarly, in example (3), use of primarily noun phrases, leading to an impoverished syntactic structure, also 
leads to a higher surprisal score.

(1) and they get married and live happily ever after (control; GPT2 surprisal score: 3.04)
(2) okay let’s something there to get everybody around it (aphasia; GPT2 surprisal score: 6.26)
(3) very nice, little girl and her bag and (aphasia; GPT2 surprisal score: 6.86)

Computational linguistic studies show that LLMs-surprisals is a valid predictor of human real-time sequence-
by-sequence processing  times26,31–39, and it has been used in (psycho-)linguistic40–45 and morphosyntactic 
 analyses46. On the other hand, Huang et al.47 and Amouyal et al.48 suggest that LLMs-surprisals cannot fully 
account for syntactic disambiguation difficulty and plausibility. Motivated by previous investigations in aphasia, 
NLP, and linguistics, we use LLMs surprisals to bridge LLMs and aphasia language analysis.

So far, use of LLMs computed surprisals in aphasia research is quite limited. Rezaii et al.5 (see also Rezaii 
et al.49) proposed that sentence surprisal, derived from GPT2, is a promising index to assess common sentence-
level and word-level abnormalities in aphasia that are caused by syntactic processing deficits. Rezaii et al.5 specifi-
cally found that higher sentence surprisals were predicted by increased use of simpler sentence structures and 
the more frequent use of high informative (e.g., open class) than low informative (e.g., closed class) words. In 
addition, they showed that higher sentence surprisals in their patients with nonfluent variant of primary pro-
gressive aphasia correlated with common clinical features of agrammatism, including a higher open-to-closed 
class words, higher nouns-over-verbs, higher heavy-to-all verb ratio, and overuse of nominalized verb forms 
(-ing). While these findings are promising, further research is needed to more systematically evaluate the clinical 
efficacy of sentence surprisals in larger samples and across different aphasia types to further understand what 
aphasia deficits are captured by LLMs-surprisals.

The rapid development in LLMs enables surprisals computation to extend beyond the classic causal language 
modeling in GPT2. Novel architectures such as instruction  tuning27 and sliding window  attention50 have also been 
implemented and are gaining attention in NLP. Thus, there is a critical need to calculate surprisals with a more 
updated and systematic set of LLMs. Yet, there has been no systematic investigation of how recently developed 
LLMs perform in aphasia studies. Razaii et al.5 used GPT2 by Radford et al.51.  Ghumman52 analyzed surprisals in 
stroke-induced aphasia, but they used the classic n-grams and neural sequence models rather than LLMs. Hence, 
in this study, we extend previous work by investigating more recent LLMs, and LLMs with different scales and 
architectural assumptions. We selected five GPT-type models so that we could investigate how scaling affects 
model prediction accuracy with the goal of providing a broader perspective on the capabilities and limitations 
of LLMs in a clinical context. We propose that a good understanding of LLMs structures would equip aphasia 
researchers with the knowledge to pinpoint the appropriate LLM, and scale it up if needed. Our model selection 
is also due to the observation that not every language biomarker researcher will have as much computational 
power as an industry practitioner, and larger LLMs do not always imply better language capacity. We therefore 
lay out LLMs’ linguistic sensitivities through a computationally accessible and streamlined NLP pipeline, with 
an attempt to demystify LLMs usage in aphasia research. Through this systematic investigation, we hope to aid 
future language disorder researchers in selecting the appropriate LLM for their purposes.

The purpose of this study was to evaluate the clinical efficacy of LLMs-surprisals as a suitable index for 
measuring deficits at the lexical-syntax interface in a large sample of patients with post-stroke aphasia, extend-
ing Rezaii et al.’s5 work in primary progressive aphasia. Specifically, we asked (a) if LLMs-surprisals can reliably 
predict the presence and subtype of post-stroke aphasia; and (b) using a series of analyses, we further sought to 
determine what aspects of language LLMs-surprisals may capture. To test these questions, we used the Apha-
siaBank archived  data16 and calculated surprisals for people with and without aphasia using spoken discourse 
from written transcripts without manual annotation.

Our broader motivation was to further establish the theoretical and clinical basis for using LLMs-surprisal as 
a suitable index for aphasia discourse assessment. Clinically, there are two primary motivations. First, utilizing 
LLMs can help inform healthcare practitioners on identifying subtle language patterns that may not be captured 
by the existing tests, hence facilitating timely decisions of whether referral to a SLP is needed. Second, through 
subtyping, we can understand that surprisal can be used to capture distinctive deficits that are associated with 
different aphasia syndromes. This could provide useful information for SLPs in determining how to treat indi-
vidual patients with aphasia.
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Methods
Predicting the presence of aphasia
We first examined LLMs’ efficacy in diagnosing if a person has aphasia or not. Establishing LLMs’ efficacy in 
predicting the presence of aphasia is important for several reasons. First, it is computationally necessary to 
demonstrate LLMs basic sensitivity to the presence of aphasia before showcasing their ability to subtype the 
aphasias. Second, while an SLP is likely to know if someone has aphasia or not without computerized measure-
ments, a nurse or doctor who initially interacts with the patient may not be as well versed in language disorders, 
especially when they are subtle. LLMs could be helpful in identifying which patients need to be referred to a SLP 
for a language evaluation. Further, many patients with mild aphasia report changes in their everyday discourse 
that are not captured by standardized tests such as the WAB-R that heavily rely on the accuracy of specific 
responses. Hence, LLMs may also aid SLPs in identifying people with latent aphasia who might also benefit 
from language therapy.

Data description
All discourse transcripts were drawn from the  AphasiaBank16. One structured discourse task (story retelling 
narrative of the Cinderella story) was selected in a group of adults with aphasia (N = 441, age: mean 60.17; range 
30–91; SD 10.95) and an age and sex matched control group (N = 341, age: mean 50.92; range 18–89; SD 21.38). 
During the Cinderella task, participants reviewed a wordless picture book of Cinderella for a few minutes. After 
that they were asked to tell the story of Cinderella without looking at the book. Both groups of participants were 
monolingual English speakers. To be sure that patients have a diagnosis of aphasia, we included only those with 
a WAB-R Aphasia Quotient (WAB-R AQ) less than or equal to 92.8 (mean 68.82; range 10.8–92.8; SD 17.64), the 
cut-off for diagnosing aphasia per the WAB-R11. The two groups were matched using the R Matchit  package53. 
Considering the sample size, we specified the method parameter as “nearest” to implement nearest neighbor 
matching, using a logistic (probit) regression propensity  score54. We provide detailed demographic information 
and group-wise numbers of observations in the supplementary (Table S1).

LLMs selection and surprisals calculation
Pre-trained autoregressive LLMs, like GPT2, were used to compute the new language index, surprisals. Such 
LLMs adopt causal language modeling, a pretraining task where the model reads texts in sequential order and 
needs to predict the next  word30. These models are also called unidirectional LLMs, since the prediction is 
based on only the left-side of the current  token27. This structure makes GPT-type LLMs more appropriate than 
other LLMs in surprisal calculation because it is compatible with the next word prediction pre-training task. 
Surprisal is the negative log-probability of a token or sequence of tokens given preceding context, as calculated 
by an  LLM30. More formally, the surprisal of a target token T (current word  wt) in a context C (previous words 
 w1…t−1) was computed as Eq. (1). When  wt was tokenized by a LLM into multiple subword tokens, we took the 
average of the subword tokens probabilities.

Derived from Eq. (1), we first computed surprisals at the utterance level: we summed the surprisal of the 
utterance over each token given the previous context, normalizing by the utterance length. We then computed 
surprisal at the paragraph level. We included approximately 33 utterances per aphasia participant (range [1,142], 
upper quartile (75%) = 45, SD = 24), and 47 utterances per healthy control participant (range [7,219], upper quar-
tile (75%) = 56, SD = 31). Thus a “paragraph” could be a participant’s whole response to the Cinderella retelling 
task or just a subset of a response. Paragraph surprisal was computed by taking the mean over each utterance’s 
surprisal.

We included five open-sourced variants of GPT-type LLMs with a range of sizes. Since we need to derive 
surprisals from LLMs token-wise log probability rather than from LLMs generated (natural language) text, our 
method is called “direct probing”. This means we can only select LLMs that are open-sourced, so that they expose 
individual token’s log-probability55. LLMs selection is also motivated by our intension to examine how scaling 
would influence LLMs’ capacity: GPT-2 with 124 million  parameters51; DistilGPT-2 with 82 million  parameters56, 
trained as a student network with the supervision of GPT-2; and GPTNeo with 1.3 and 2.7 billion  parameters57,58, 
henceforth GPTNeo-1.3B and GPTNeo-2.7B, which is close to the size of the smallest models in the GPT-3 
family. We are aware of the rapidly evolving landscape of LLMs. Therefore, we included Mistral with 7 billion 
parameters (v0.1, henceforth Mistral-7B50). Similar to GPT-4, Mistral-7B also uses causal language modeling 
and next token prediction in its pre-training, and it only contains the decoder part of the transformer. Mistral-
7B outperforms the popular Llama2-13B on all the widely used  benchmarks50. It is also one of the largest and 
latest autoregressive LLMs that is open-sourced. To operationalize LLMs derived metrics, we used minicons59, 
an open-source utility that provides a consistent API for behavioral analyses of LLMs. All the LLMs used in this 
study are hosted in HuggingFace (https:// huggi ngface. co/ models; as of May 2024).

LLMs input format
The input for each LLM was orthographically transcribed text as we are interested in investigating how effec-
tive LLMs are in diagnosing aphasia in a clinical setting where clinicians have minimal to zero time to conduct 
quantitative analysis of discourse samples. Also, indices without manual coding enables reproducibility and 
consistency, since elaborate manual coding are prone to errors and inter-coder inconsistencies. Here are examples 
illustrating what LLMs input look like versus a program (CLAN software) that requires elaborate coding. Accord-
ing to CHAT format used in CLAN software, “& = laughs” marks non-speech verbalization such as laughter, and 

(1)Surprisal(T|C) = −logP(wt |w1...t−1)

https://huggingface.co/models
Brian MacWhinney
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“[+ exc]” marks extraneous comments such as “wait a second”. These codes tell the software to not include the 
associated utterances in the analysis. Thus, a CHAT annotated transcription looks like & = laughs I haven’t really 
had an injury. So [+ exc] luckily I haven’t had any injuries but the program is actually analyzing I haven’t really 
had an injury. so luckily I haven’t had any injuries. In contrast, LLMs can handle the latter input, I haven’t really 
had an injury. so luckily I haven’t had any injuries, which requires minimal annotation from human annotators. 
Verbatim transcription or elaborate annotation such as “& = laughs” and “[+ exc]” are not needed in LLMs input. 
For the current research, our LLMs-based NLP pipeline does not include an automatic step for speech-to-text 
transcription. Instead, we focused our analyses on text and not sound features as LLMs are mainly pre-trained 
on text data. We argue that using a LLM pre-trained in sound data such as OpenAI’s Whisper would be more 
appropriate when sound features are involved in benchmarking LLMs’ clinical competence.

Model construction and optimization
Four different machine learning classification models were constructed and optimized using LLMs-computed 
surprisal features as predictor variables to predict whether a given text is produced by the control or the aphasia 
group. The four models include decision tree, random forest, gradient boosting, and support vector machine 
classifier (SVM). Decision trees split the feature space into smaller regions based on feature values, while random 
forests aggregate predictions from multiple decision trees. Gradient boosting builds decision trees sequentially 
to correct errors, and SVM finds the hyperplane that best separates classes in the feature space. The aim here is 
to systematically examine LLMs’ clinical efficacy with different classification models, and to demonstrate how 
evaluation metrics may change with different types of classifiers. To further tease apart the distinct contribu-
tions of each LLM to model efficacy, we constructed and optimized five separate models using the classification 
method with the best efficacy in predicting the presence of aphasia from our main analysis.

In order to reduce the risk of overfitting and to balance the datasets, we first split the entire dataset into the 
training (2/3 of the whole data) and the gold testing datasets (1/3 of the whole data). Using the training dataset, 
we conducted nested k-fold cross-validation with the hyperparameters optimization algorithm grid search. Since 
our whole dataset is small, we set k (inner and outer) as 3, and we focused on tuning only the essential hyperpa-
rameters. We chose nested cross-validation to address the overfitting  concern60. With nested cross-validation, 
hyperparameter search and tuning should have a lower chance to overfit the dataset because it is exposed only 
to a subset of the dataset provided by the outer cross-validation procedure. We then tested the tuned models’ 
performance on the gold testing dataset, which has never been used in training or validation. In other words, 
we evaluated each model’s prediction performance on the gold testing dataset, and model’s classification report 
is based on the gold testing dataset. Our machine learning models selection strategies are inspired by Cawley 
and  Talbot60. SHAP (SHapley Additive exPlanations) values were visualized to reveal feature importance in 
models’ classification. Detailed search space and model configuration procedures are given in the supplementary 
(Table S3-S4). All the machine learning models were constructed and evaluated using scikit-learn61.

Predicting aphasia subtypes
We next examined LLMs’ efficacy in subtyping the aphasias. This was to increase our understanding of what 
aspects of LLMs-surprisals may be capturing clinically. For example, non-fluent aphasia (e.g., Broca’s aphasia) 
and fluent aphasia (e.g., Wernicke’s and Anomic aphasia) differ in terms of their sentence level linguistic deficits. 
In Broca’s aphasia, morphosyntax is more impaired while semantics are more impaired in Wernicke’s aphasia. 
These impairment differences should give rise to different LLM-surprisal patterns, which should aid in subtyping 
the aphasias. Further, subtyping analysis will reveal how clinically effective the proposed aphasia classification 
methods are. Additionally, we maintain that different subtypes of aphasias may have different treatment needs. 
Thus, it is critical to classify them for more precise and personalized treatment.

Data description
The same dataset, discourse task, and inclusion criterion were used to select a group of adults with aphasia 
who had one of three subtypes of aphasia: Broca, Wernicke, and Anomic (N = 186). This selection had two pri-
mary motivations. First, these three subtypes, especially Broca’s and Wernicke’s aphasia, show distinct linguistic 
impairments, which will inform what LLMs-surprisals are characterizing in a clinical linguistics setting. Second, 
these three subtypes of aphasia are the most widely available and frequently investigated for studies using the 
 AphasiaBank62. To balance the data points, we used the Matchit package with the same parameters setting as the 
first dataset. We randomly sampled 2200 unique observations for each subtype of aphasia. In total, there were 
6600 unique observations. This is the largest amount of aphasia-subtype-balanced unique observations we can 
get from 186 participants. Detailed demographic information and subtype-wise number of observations are 
given in the supplementary (Table S2).

LLMs details
The same LLMs, surprisals calculation methods, and input format used to predict the presence of aphasia were 
also used to subtype the aphasias. To examine whether surprisals are providing new or existing information 
about aphasia, we calculated models that included just LLM-surprisals and compared those to models with 
language indices commonly used in existing aphasia research (hereafter referred to as the existing indices; 
described below) and to models that include both existing language indices and surprisals. This type of analysis 
was not included in the aphasia presence analysis, because that analysis was a baseline proof-of-concept task 
that showcased LLMs potential for clinical efficacy. We view aphasia subtyping as the main examination of how 
much clinical efficacy LLMs have.
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Combining the existing language indices
Only the language indices that did not require manual annotation in CLAN were included as existing language 
indices. We elected to remove language indices that required verbatim manual coding and elaborate annotations, 
for example, utterance error, percentage of word error, and so on. This is because such indices involve verbatim 
and elaborate manual annotation, which can be time consuming and inconsistent across clinicians and SLP raters. 
This decision was also made in part to be consistent with the text input we used for the LLMs.

The selected language indices reflect three broad categories that are commonly used by clinicians and com-
putational studies of  aphasia12–16,52,62–66. First, indices of linguistic productivity or fluency included mean length 
of utterance and number of utterances in the sample. Second, the index of lexical diversity was type-token ratio 
(number of unique lemmas divided by the number of total running lemmas). Third, indices of syntactic complex-
ity included the ratio of open to closed words (open class words divided by closed class words), sentence com-
plexity ratio (number of clauses divided by number of sentences), nouns over verbs (number of nouns divided 
by number of verbs), nouns to prepositions ratio (number of nouns divided by number of prepositions), verbs 
ratio (number of verbs divided by summation of verbs and nouns), nouns percentage (number of nouns divided 
by number of words), verbs percentage (number of verbs divided by number of words), adjectives percentage 
(number of adjectives divided by number of words), adverbs percentage (number of adverbs divided by number 
of words). These language indices were computed using  NLTK67 and spaCy based automatic text analysis tools 
TAACO68,69 and TAASSC70.

Model construction and optimization
The same four machine learning classification models used to predict the presence of aphasia were constructed 
and optimized for subtyping the aphasias. We created three models to help parse apart whether LLMs-surprisals 
are adding new or existing information about language in aphasia: model (a) uses both LLMs-surprisals and 
the existing language indices, model (b) only uses surprisals, and model (c) only includes the existing language 
indices. The same hyper-parameter tuning and nested k-fold cross-validation methods used in the presence of 
aphasia analyses were implemented here. We again used SHAP values to visualize feature importance. We fit the 
SHAP explainer with the best configured model on the gold testing dataset.

In contrast to predicting the presence of aphasia, aphasia subtyping is a multi-class classification task. The 
three classes include Wernicke’s, Broca’s, and Anomic aphasia. We reported one versus one (one-vs-one) clas-
sification results. Unlike one-vs-rest that splits the data into one binary dataset for each class, the one-vs-one 
approach splits it into one dataset for each class versus every other class. In order to investigate how different 
strategies influence models’ prediction, we additionally constructed and optimized a random forest classifier 
using one-vs-rest approach. We created models that leverage each LLM separately and then compared model 
evaluation metrics, in order to understand how surprisals from different-sized LLMs may have an impact on 
model’ subtyping performance. Detailed search space and model configuration procedures are given in the 
supplementary (Table S5–S7).

What do LLM‑surprisals represent clinically?
We investigated the relationships between LLM-surprisals and existing language indices using two approaches. 
In the first approach, we built correlational models looking at the relationship between LLMs-surprisals and 
aphasia severity, and LLM-surprisals and the existing language indices outlined above. To do this analysis, we 
used the same aphasia dataset that was used to predict aphasia presence (N = 441). The same inclusionary criteria 
and sampling methods were used to select participants with aphasia. The same set of existing language indices 
used in aphasia subtyping was applied for building the correlational model. These existing language indices in 
this dataset were calculated using the same text analysis tools TAACO68,69 and TAASSC70. Surprisals were derived 
from LLMs, using the same methods and settings as in the aforementioned tasks. The alpha level in this paper is 
set as 0.05. Correlation effect size was considered strong if the coefficient was 0.5 or  larger71. Statistical analyses 
were conducted in  R72.

In the second approach, we examined surprisals between Broca’s and Wernicke’s aphasia to test the hypothesis 
whether surprisals can differentiate nonfluent aphasia from fluent aphasia. A healthy control group was also 
included as a comparison to further understand the surprisals metric. The aphasia dataset was the same one we 
used to predict aphasia subtypes (N = 186). We additionally selected a matched control group (N = 76) using the 
Matchit package. Our baseline comparison for this analysis was comparing Broca’s and Wernicke’s aphasia on 
two syntactic complexity indices (proportions of nouns over verbs, and proportions of clauses over sentences). 
These indices were used in a similar surprisal  analysis5, which showed higher nouns over verbs as a meaningful 
marker of non-fluent aphasia. Rezaii et al.5 additionally found a nonlinear relationship between sentence-level 
surprisals and syntax frequency (i.e., the average correct use of syntactic rules). Note, Rezaii et al.5 used nouns 
over verbs and syntax frequency. Here, we take clauses over sentences as a proxy index to Rezaii’s syntax fre-
quency index, because “clauses over sentences” has been shown to be informative in the subordination amount, 
which is a commonly used and recommended index of productive  complexity73.

Results
LLMs’ efficacy in predicting the presence of aphasia
Leveraging all LLMs features at once
Table 1 includes the accuracy (percentage of correct predictions made by the model), precision (the model’s 
performance at classifying positive observations), recall (how “sensitive” the classifier is at detecting positive 
instances), and F1-score (a harmonic mean of the precision and recall) for the different machine learning classi-
fiers. Each machine learning classifier has five predictors (i.e., surprisals calculated from each of the five LLMs). 
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Overall, all four machine learning models showed good performance in predicting the presence of aphasia from 
surprisals, with relatively high F1-scores ranging from 0.84 to 0.92. Of these models, SVM was the best model, 
having an accuracy of 0.92, which suggests excellent model performance. In the medical field, machine learning 
metrics, specifically F1 scores, exhibit values spanning from 0.66 to 0.9674, where a value close to 1 represents 
good precision and recall values.

We next visualized how each LLM’s surprisal feature contributes to SVM prediction using the SHAP value, 
since SVM showed the best efficacy (c.f., Table 1). As shown in Fig. 1, the most decisive surprisal feature in pre-
dicting the presence of aphasia came from Mistral-7B. Mistral-7B uses a novel architecture (i.e., sliding-window 
attention)50 and is significantly larger than the other LLMs included in this analysis. However, it is likely that 
Mistral-7B’s novel architecture, not its size, is driving its superior performance as the smaller LLMs, GPT-2 and 
DistilGPT-2, showed comparable results as the larger GPTNeo-1.3B and GPTNeo-2.7B models.

Leveraging one LLM at a time
To further examine each LLM’s contribution to the model, we additionally constructed a SVM with one predictor 
variable at a time. We chose SVM, because it gave the best efficacy in predicting the presence of aphasia among 
the four machine learning classifiers (c.f. Table 1). Evaluation metrics are reported in Table 2.

Table 2 suggests that Mistral-7B individually led to the best SVM in predicting the presence of aphasia 
(F1-score 0.88), which is in line with the SHAP value rank (Fig. 1). This indicates that Mistral-7B can excel with 
and without other LLMs features in aphasia presence detection. Mistral-7B is followed by the two GPTNeo LLMs. 
The smaller LLMs DistilGPT-2 and GPT-2 showed lower efficacy (F1-scores 0.69) than larger LLMs, suggesting 

Table 1.  Evaluation metrics of different machine learning classifiers in predicting the aphasia and the control 
group, with all five LLMs as predictor variables.

Machine learning classifier Accuracy Precision Recall F1-score

Decision tree 0.86 0.87 0.86 0.86

Random forest 0.84 0.84 0.84 0.84

Gradient boosting 0.86 0.86 0.86 0.86

SVM 0.92 0.92 0.92 0.92

Figure 1.  LLMs features importance on SVM predicting the presence of aphasia, rank based on the absolute 
SHAP value.

Table 2.  Evaluation metrics of SVM in predicting the aphasia and the control group, with individual LLM as 
the predictor variable.

One predictor variable at a time Accuracy Precision Recall F1-score

SVM (Mistral-7B) 0.88 0.89 0.88 0.88

SVM (GPTNeo-2.7B) 0.84 0.85 0.84 0.84

SVM (GPTNeo-1.3B) 0.86 0.89 0.86 0.85

SVM (DistilGPT-2) 0.76 0.84 0.76 0.74

SVM (GPT-2) 0.71 0.82 0.71 0.69
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that surprisals derived from small LLMs should be interpreted with caution when used as individual variables 
predicting the presence of aphasia.

LLMs’ efficacy in predicting aphasia subtypes
Leveraging all LLMs features at once
Evaluation metrics are given in Table 3. This table shows that overall, adding LLM indices on top of the exist-
ing language indices improved the gradient boosting (GB), SVM, and random forest (RF) classifiers’ accuracy, 
precision, recall, and F1-score, but had limited impact on the decision tree (DT) classifier’s prediction efficacy. 
More specifically, adding LLMs to existing language features using the SVM classifier gave rise to the best overall 
prediction efficacy: the SVM F1-score changed from 0.73 (model c.) to 0.79 (model a.). This suggests that LLMs 
optimized with gradient boosting, SVM, and/or random forest classifiers are providing new information about 
aphasic language, and in conjunction with existing language indices, have the potential to advance automatic 
subtyping of aphasia, leading to decent efficacy.

We next ranked the most informative features in predicting the aphasia subtypes based on the SHAP values 
from the best configured model (SVM) in Fig. 2. This allowed us to further quantify the contributions of LLM-
surprisals versus the existing language indices to aphasia subtyping.

As shown in Fig. 2, for a SVM combining all predictor variables (Model a.), Mistral-7B showed the highest 
absolute SHAP value, followed by the existing language variables (c.f. Methods Sect. 2.2.3): AdvPercent (adverb 
percentage), NounPercent (noun percentage), VerbRatio (number of verbs divided by summation of verbs and 
nouns), TotalUtts (total number of utterances), TTR (type token ratio), and MLU (mean length of utterance). 
The two GPTNeo LLMs were less decisive with subtyping the aphasias. The “Sum of 8 other features” included 
GPT-2 and DistilGPT-2 surprisals, SentComplexity (sentence complexity ratio: number of clauses divided by 
number of sentences), VerbPercent (number of verbs divided by number of words), AdjPercent (number of 
adjectives divided by number of words), NounVerb (number of nouns divided by number of verbs), OpenClose 
(open class words divided by closed class words), and NounPrep (number of nouns divided by number of 
prepositions). Individually, these eight features have minimal impact on the model’s prediction of the aphasia 
subtypes. The complete SHAP figure listing all these features is given in the supplementary (Figure S1). Overall, 
Fig. 2 suggests that surprisals calculated with Mistral-7B affect model prediction the most and separately from 
the existing language features, though the existing language variables are still robust and informative in subtyp-
ing the aphasias. These results also indicate that the smaller LLMs, GPT-2 and DistilGPT-2, are less capable of 
aphasia subtyping than the larger LLMs.

Additionally, to show a different classifier’s prediction efficacy with a different approach, Fig. 3 visualizes 
random forest classifiers predicting three aphasia subtypes in a “one-vs-rest” format: Wernicke’s versus Anomic 
and Broca’s, Broca’s versus Anomic and Wernicke’s, and Anomic versus Broca’s and Wernicke’s in the gold test-
ing dataset. We implemented this one-vs-rest approach in random forest instead of SVM, although SVM seems 
to be the overall best classification method in our main analyses. This is because of random forest classifiers’ 
relatively better computational efficiency, ease of implementation, and robust performance across a wide range of 
datasets without the need for extensive parameter tuning. Considering the small size of the gold testing dataset, 
we implemented a stratified two-fold cross-validation. The mean and standard deviation of the AUC (area under 
the curve) of the model across both folds are reported. Three models (a,b,c) showed similar efficacy.

Table 3.  Evaluation metrics of different machine learning classifiers in predicting aphasia subtypes, with three 
different feature combinations. DT, decision tree classifier; RF, random forest classifier; GB, gradient boosting 
classifier; SVM, support vector machine classifier.

LLMs and existing indices (model a.) LLMs (model b.) Existing indices (model c.)

DT accuracy 0.65 0.53 0.68

DT precision 0.68 0.58 0.67

DT recall 0.65 0.53 0.68

DT F1-score 0.63 0.54 0.67

RF accuracy 0.76 0.61 0.76

RF precision 0.78 0.64 0.76

RF recall 0.76 0.61 0.76

RF F1-score 0.75 0.62 0.76

GB accuracy 0.71 0.6 0.69

GB precision 0.72 0.61 0.72

GB recall 0.71 0.6 0.69

GB F1-score 0.71 0.6 0.68

SVM accuracy 0.79 0.66 0.73

SVM precision 0.81 0.69 0.73

SVM recall 0.79 0.66 0.73

SVM F1-score 0.79 0.65 0.73
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Figure 3 demonstrates that LLM indices (model b.) are the most effective in predicting Broca’s versus the rest 
and Wernicke’s versus the rest. Combining LLMs and the existing indices (model a.) leads to a more effective 
model in predicting Anomic versus the rest. The existing language indices (model c.) are slightly less effective 
than LLMs (model b.) in teasing apart aphasia subtypes. Overall, using one versus the rest approach gives rise to 
better model performance than the one versus one approach (c.f. Table 3), at least for the random forest classifiers. 
Critically, both approaches reveal that adding LLMs features on top of the existing ones can improve a model’s 
efficacy, suggesting that surprisals may represent a distinct aspect of language processing from existing clinical 
language indices. Further, we infer that there is intellectual and clinical merit to use a LLM index of a certain 
linguistic operation (e.g., surprisal) in advancing classic aphasia subtypes toward more precision-medicine.

Leveraging one LLM at a time
In order to examine individual LLM’s contribution to each model’s prediction and to avoid potential feature 
redundancy across the various LLMs-surprisal metrics, we created SVM for each LLM surprisal feature in Table 4, 
in a similar format as in Table 2. Interestingly, when using one LLM feature at a time to subtype aphasia (model 
b.), the smaller LLMs, GPT-2 and DistilGPT-2, showed higher F1-score than the larger ones such as Mistral-
7B. When combining the existing features and one LLM feature at a time (model a.), we found that the smaller 

Figure 2.  LLMs features importance on SVM predicting the subtypes of aphasia, rank based on the absolute 
SHAP value.

Figure 3.  Multiclass Receiver Operating Characteristic (ROC) and area under the curve (AUC) metrics to 
evaluate the quality of the random forest classifiers One-vs-Rest, with LLMs and existing language indices 
(model a.), only LLM indices (model b.), and only the existing indices (model c.).
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LLMs such as GPT-2 showed similar efficacy to Mistral-7B. A comparison of model a. in Table 2 where all LLMs 
surprisals are included to model a. in Table 4 where individual LLM features are included suggests that model 
a. in Table 4 does not excel further than model a. in Table 2. This suggests that including all LLMs-surprisals 
features at once as opposed to including one at a time helps optimize models’ configuration. This also indicates 
that surprisals calculated with different LLMs may not all represent the same aspect(s) of language.

What do LLM‑surprisals represent clinically?
Relationship between LLMs and existing language indices
To better our understanding of what LLMs-surprisals are measuring in aphasia studies, we investigated how 
surprisals relate to aphasia severity and the existing language indices. Figure 4 shows Spearman correlation coef-
ficients for LLMs mean surprisals, aphasia severity measured using the WAB-R AQ score, and commonly used 
language measures indices in  aphasia66,75.

First, all LLMs-surprisals had a significant negative correlation with WAB-R AQ, indicating that patients with 
milder aphasia symptoms had lower mean surprisal scores. Mistral-7B, the largest LLM, showed the strongest 
correlation coefficient. This speaks to Mistral-7B’s architecture being better able to capture the severity of the 
aphasia impairment than the other LLMs. Second, all LLMs-surprisals were strongly negatively correlated with 
mean length of utterance. This suggests that a higher mean surprisal is an indicator of lower linguistic produc-
tivity and fluency, reflected in reduced length of utterances. Third, LLMs-surprisals and verbs percentage were 
negatively correlated, suggesting that reduced use of verbs is associated with higher surprisals. Fourth, all but 
Mistral-7B showed moderate positive correlations with type-token-ratio. This indicates that higher surprisals 
were associated with higher lexical diversity. Further, all the LLMs-surprisals are positively correlated with nouns 
over verbs, suggesting that overusing nouns and underusing verbs can be associated with higher surprisals. 
Moreover, all the LLMs showed strong negative correlation with the syntactic complexity index “clauses over 
sentences”. This implies that higher surprisals are associated with fewer embedded clauses and more limited 
syntax. All the LLMs-surprisals were also positively correlated with the ratio of open and closed class words. 
This reveals that overly relying on open class words with limited production of closed class words is related to 
higher surprisals, across LLMs.

Moreover, we found strong positive correlations within LLMs-surprisals. This is not surprising, because all 
the LLMs are unidirectional with only the decoder part of a transformer. Although these LLMs differ in size and 
specific architectures, they share the core architecture and pre-training task (causal language modeling, next 
word prediction). We would predict that the relation of these LLMs should be stronger, compared to the rela-
tion between a masked language model such as BERT and a causal language model like GPT-2. Clinically, we 
infer that using decoder unidirectional LLMs leads to consistent findings. Strong correlations within LLMs also 
imply that our finding is generalizable to any LLMs pre-trained with causal language modeling. Depending on 
specific research goals, we can focus on one LLM if computation resource is too limited to operate multiple LLMs.

Table 4.  Evaluation metrics of SVM in predicting aphasia subtypes, with individual LLM features, one at a 
time.

LLM and existing indices (model a.) LLM (model b.)

Mistral-7B accuracy 0.76 0.63

Mistral-7B precision 0.77 0.49

Mistral-7B recall 0.76 0.63

Mistral-7B F1-score 0.76 0.55

GPTNeo-2.7B accuracy 0.74 0.65

GPTNeo-2.7B precision 0.75 0.54

GPTNeo-2.7B recall 0.74 0.65

GPTNeo-2.7B F1-score 0.74 0.57

GPTNeo-1.3B accuracy 0.74 0.53

GPTNeo-1.3B precision 0.75 0.64

GPTNeo-1.3B recall 0.74 0.53

GPTNeo-1.3B F1-score 0.74 0.55

DistilGPT-2 accuracy 0.74 0.69

DistilGPT-2 precision 0.74 0.59

DistilGPT-2 recall 0.74 0.69

DistilGPT-2 F1-score 0.74 0.62

GPT-2 accuracy 0.76 0.63

GPT-2 precision 0.77 0.66

GPT-2 recall 0.76 0.63

GPT-2 F1-score 0.76 0.62
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Behavior of LLMs‑surprisals in nonfluent versus fluent aphasia
To demystify specifically how LLMs behave in aphasia subtypes, and to further our understanding of what LLMs-
surprisals capture, we conducted a three-way comparison across two aphasia subtypes—Broca’s and Wernicke’s 
aphasia, and the control group. We additionally carried out this comparison on two commonly used indices of 
syntactic complexity, proportions of nouns over verbs and proportions of clauses over  sentences5,73, as a further 
way to understand what surprisals represent.

Visual inspection of histograms and statistical examination (Shapiro–Wilk test, p < 0.05) indicate that the 
normality assumption is violated. Therefore, we used the non-parametric Wilcoxon test. As expected, compared 
to Wernicke’s aphasia, persons with Broca’s aphasia showed higher nouns over verbs and lower clauses over 
sentences, indicating reduced syntactic complexity in non-fluent aphasia (Fig. 5). Importantly, Wilcoxon tests 
across all the LLMs showed significant mean differences between those with Broca’s and Wernicke’s aphasia, with 
higher surprisals in the Broca’s aphasia group. These results echo the correlational model in Fig. 4, suggesting 
that agrammatic features of aphasia can be captured in LLMs-surprisals at both word and sentence level.

Across LLMs, the Control group showed lower surprisals than the fluent and non-fluent aphasia groups. This 
further justifies LLMs-surprisals’ general validity. Boxplots also showed noticeably larger interquartile range in 
the aphasia groups (especially the non-fluent aphasia), relative to the control group, suggesting more variability 
in aphasia.

Discussion
This study examined the efficacy of LLMs in characterizing and predicting aphasia, an acquired language disor-
der. We aimed to answer two main research questions. First, relative to the existing diagnostic indices and tools, 
how can LLMs advance automatic prediction, measurement, and subtyping of aphasia? Second, what features of 

Figure 4.  Correlations coefficients heatmap of LLMs-surprisals, WAB-R AQ, and selected existing language 
indices. Insignificant cells are left blank.
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aphasia deficits do LLM-surprisals capture? Correlational and predictive machine learning models were proposed 
and evaluated. We found that NLP pipelines integrating LLMs show decent performance in classifying persons 
with aphasia and healthy controls, and with careful configuration, it can lead to higher efficacy in subtyping 
aphasia than a pipeline without LLMs. We additionally found that LLMs-surprisals relate to and complement 
the existing language measures.

Advantages and disadvantages of LLMs usage in aphasia research
Advancements and challenges
LLMs provide several advantages: efficacy, efficiency, and scalability. First, our findings suggest that an NLP 
pipeline integrating LLMs enables testing and refining of language disorder models. LLMs features lead to excel-
lent performance in diagnosing persons with aphasia and healthy controls. Adding LLMs indices improved the 
models’ accuracy in predicting subtypes of aphasia. Second, it is worth highlighting that the machine learning 
models with LLM features managed to differentiate between Broca’s and Wernicke’s aphasia since they represent 
non-fluent and fluent aphasias, respectively, even though we did not code for fluency in our input. This sug-
gests that adding LLMs features on top of existing language indices enables more precise and effective models. 
Third, with CLAN, elaborate speech disfluency annotations can be time-consuming. We built all the models 
without any speech error or disfluency annotations. Reproducing a model based on CLAN features requires 
systematic annotation following certain conventions such as CHAT, whereas LLM based models can advance the 
performance without using verbatim or richly annotated datasets. Fourth, a more efficient pipeline can be more 
scalable, because it involves fewer operational steps and provides more automation. If a larger LLM is needed, 
we can easily take a pre-trained LLM off-the-shelf without further training or fine-tuning. Such versatility and 
flexibility in scaling can greatly facilitate scientific discovery with lower costs.

Scaling and its implication
We did not always find outstandingly higher efficacy using larger-scale LLMs. Although Mistral-7B and larger 
LLMs showed higher efficacy than smaller ones in classifying aphasia and healthy controls (Table 2, Fig. 1), we 
found the inverse when classifying subtypes of aphasia (Table 4). This leads us to critically examine the view that 
larger size LLMs can be superior to their smaller  counterparts47,76–78. It is worth reconsidering the supremacy of 

Figure 5.  Wilcoxon tests with Bonferroni correction, comparing LLMs-surprisals behavior in non-fluent 
aphasia (the Broca’s aphasia group), fluent aphasia (the Wernicke’s aphasia group), and the Control group. 
Notation: ns: p > 0.05; *: p <  = 0.05; **: p <  = 0.01; ***: p <  = 0.001; ****: p <  = 0.0001.
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larger LLMs. Our approach and results indicate the need for a more nuanced way in assessing LLMs’ efficacy for 
aphasia research. One of the primary limitations of larger LLMs is the immense computational resources required 
for their training and deployment. The massive number of parameters and computational power necessary for 
training these models makes them inaccessible to many researchers. Scaling massive LLMs also suffers from 
transparency decrease, as there is limited understanding of how LLMs’ abilities change as they scale  up78. With 
the appropriate experimental design and dataset selection, smaller LLMs can outperform larger ones, and can 
provide better interpretability due to their simpler  architectures79,80.

Why did the larger scale LLMs such as Mistral-7B not always give us significantly better measures? Our find-
ings suggest that in subtyping aphasia, machine learning models involving larger scale LLMs underperform those 
involving smaller LLMs (Table 4). This result also indirectly aligns with Oh and  Schuler81 and Shain et al.38. They 
found that larger scale LLMs show a worse fit to human reading times.  Shain37 suggests that large scale LLMs with 
instruction tuning may “contaminate” the interpretability of next word prediction, hence they may lead to worse 
alignment with human behavior. We infer that this is likely to be a domain adaptability problem. Larger LLMs’ 
performance can deteriorate when applied to specific domains or dataset, for instance, an aphasia corpus, which 
large LLMs have not encountered during their pre-training. We indirectly hypothesize that smaller LLMs, on the 
other hand, because of their reduced architecture complexity, are more likely to exhibit better performance and 
adaptability in domain-specific  datasets82. Our findings motivate us to argue that although large-scale LLMs have 
remarkably pushed the boundaries of NLP, their deployment comes with non-negligible trade-offs, for example, 
computational power requirements, lack of interpretability, and generalization  limitations80. The finding that 
larger LLMs did not excel further justifies that, clinical researchers can achieve their goals by solely taking a 
smaller LLM off-the-shelf and conducting inferencing such as computing mean surprisals.

To address LLMs’ disadvantages and make the most of their advantages, we propose to fine-tune LLMs on a 
larger aphasia corpus, and test LLMs’ performance on a larger healthy control corpus. If LLMs still derive sur-
prisal scores in the same pattern, it would validate LLMs derived metrics. For the time being, we used pre-trained 
LLMs without any form of controlling their source training data, parameters, or pre-training tasks. We argue that 
our approach improves the ecological validity of LLMs in aphasia research, making our whole pipeline accessible 
and generalizable in practice. As a showcase of methodology, we hope to introduce these versatile models, with 
attempts of exploring interpretability strategies. For next steps, we plan to further explore and validate LLMs 
derived metrics from fine-tuning perspectives.

Interpret LLMs‑surprisals in a clinical context
Clinical interpretation and applications
Taken together, the current findings support a clinical potential of LLMs-surprisals in predicting and under-
standing aphasia. LLMs sentence surprisals differentiated discourse speech produced by persons with aphasia 
and healthy adults and improved the models’ accuracy to differentiate common aphasia types. These findings 
suggest that in considering how speakers select and assemble words into sentences, an index such as surprisals 
can be effective in detecting pathologies associated with aphasia. As a meaningful biomarker, LLMs-surprisals 
can enhance clinical trials for latent aphasia or the “subclinical” group, namely persons who self-report aphasia 
but are not diagnosed as aphasia with WAB-R AQ. For this group, the existing language indices alone may not 
be sufficiently precise to help clinicians and SLPs make the decision. LLMs may become relevant. The existing 
indices in conjunction with LLMs-surprisals will greatly facilitate the process of effective clinical decisions. Bet-
ter subtyping of aphasia would also be beneficial to understand why some patients with certain types of aphasia 
respond to certain language related treatments while other aphasia subtypes do not.

Our second set of findings further revealed that surprisals can be a useful index for detecting core agrammatic 
features that manifest at both the word and sentence-level5. The two levels of processing (use of high frequency 
content words and reduced syntax) are not modular, instead, patients with agrammatic aphasia use such strategies 
to maximize their communication within limited processing  resources5,49,83. LLMs-surprisals, as a holistic index, 
integrate word and sentence level features, which may characterize aphasia patients’ communication patterns 
in ways that may not be salient when classic language indices are used. Our correlational analyses revealed that 
a range of traditional features of nonfluent agrammatism showed stronger associations with higher surprisals, 
compared to general aphasia severity (WAB-R AQ) or lexical diversity (type token ratio) measures. More spe-
cifically, clinical measures that are thought to reflect reduced fluency and impoverished structural complexity, 
including reduced mean length of utterance, reduced clauses over sentences, reduced production of verbs per-
centage were associated higher surprisal scores. Patients’ increased reliance on open-closed class words (higher 
open to closed class ratio) and nouns rather than verbs also led to higher surprisals. Lastly, the group of persons 
with Broca’s aphasia showed significantly higher surprisals compared to those with Wernicke’s aphasia, further 
confirming that surprisals reliably capture nonfluent agrammatic characteristics in aphasia. Overall, our findings 
refine previous studies in that surprisal captures the word-level and structural-level abnormalities in patients 
with aphasia experience, with greater sensitivity for agrammatic features.

Our LLMs based NLP pipeline has ecological validity. This is in line with previous studies on clinical applica-
tions of  LLMs84–86. Our showcase reveals that we can gain meaningful information from LLMs using our laptop. 
Without computationally intensive tasks like training and fine-tuning LLMs, or labor-intensive tasks like elabo-
rate annotation of a transcript, it is still feasible for clinical researchers to compute sufficiently sensitive metrics 
such as mean surprisals. We hope our methodology can inspire a wider application of LLMs in clinical practice. 
Moreover, our study can hopefully inspire the development of new methods to improve aphasia treatment. Inte-
grating state-of-the-art NLP systems has the potential to improve accuracy and efficiency of aphasia prognosis 
and treatment, quantifying which language learning mechanisms in aphasia lead to greater improvement in 
language recovery, hence advancing the development of refined models for aphasia rehabilitation.
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Computational interpretation
From the perspective of machine learning models, including LLMs-surprisals together with the existing language 
indices can advance models’ efficacy greater than a model with only LLMs-surprisals or the model with only the 
existing language indices. Another finding is that, although LLMs-surprisals are more decisive than some of the 
existing indices in subtyping aphasia, a model with existing indices outperformed a model with LLMs, regard-
less of using all LLMs at once or using one LLM at a time. This is possibly because next word prediction within a 
sentence, a pre-training task shared by all the LLMs in our experiments, is not sufficient to capture the complex 
and subtle linguistic patterns in aphasia. LLMs-surprisals can complement the existing language  features47.

Note, LLMs-surprisals failed to surpass the existing indices only in the one-vs-one classification approach 
(a binary classifier is trained for every pair of classes). With a different classification task one-vs-rest (a binary 
classifier is trained for each class against all other classes combined), we found that LLMs slightly outperformed 
the existing indices (Fig. 3). Although both one-vs-one and one-vs-rest are multi-classification approaches, with 
three classes (Wernicke, Broca, and Anomic), misclassification is presumably more likely to occur with one-vs-
one than with one-vs-rest. We stipulate that noise from misclassified cases in a one-vs-one approach potentially 
may skew the performance  metrics60.

Future directions
NLP research considers LLMs-surprisals as an index of plausibility and relatedness41, besides syntactic complexity, 
fluency features, and lexical  properties5,41–43,46,49,66,87,88. We leave its clinical relevance for future justification. To 
what extent LLMs-surprisals can be a sensitive index of semantic plausibility or relatedness in a clinical context 
is open to discussion. For future studies, with larger sample size and boarder aphasia population, we plan to 
quantify how much LLMs-surprisals can capture nuanced differences between low-plausibility sequences and 
extremely low-plausibility ones. It is also possible that LLMs driven indices can go above and beyond, for exam-
ple, accounting for discourse flow and topic complexity. For the current investigation, we focus on sentence as 
a measurement unit, and derive paragraph indices from sentential measures. It is likely that expanding context 
window sizes can lead to different findings.

The current study lays the groundwork for future studies to obviate not only manual coding but also transcrip-
tion, achieving total automation in aphasia severity measurement. Although it can be cost-effective not having 
to conduct verbatim transcription, such as annotating speech errors and laughter, our pipeline is not completely 
automatic and still needs transcription. Given that our focus here is on LLMs that are pre-trained using mainly 
text data, our pipeline does not include LLMs-based speech to text transcription. With ongoing advances with 
automated text-to-speech transcription for impaired speakers and LLMs pre-trained on sound data, future 
research should replicate current findings with recorded speech samples to obviate  transcription22,23,89,90. We 
also highlight that verbatim transcription has its own clinical merit, as disfluencies on their own are informative 
of language  disorders12,13,15,66. Automatic transcription of non-fluent speech as well as replacing manual coding 
with machines would significantly benefit the field. We leave that for future endeavors.

Conclusion
LLMs are increasingly transforming the field of NLP. However, it remains relatively understudied what a clini-
cally accessible and interpretable LLMs-based NLP pipeline adds, and how it could advance automatic language 
analysis in language disorders such as aphasia. This study attempts to bridge the gap. We developed and evaluated 
such a pipeline, showcasing LLMs-surprisals as a diagnostic and predictive tool, and that pre-trained LLMs have 
great potential in generating meaningful language features without costly pre-processing, manual annotation, 
or sophisticated fine-tuning. Such features were statistically correlated with aphasia severity as well as the exist-
ing clinical language indices of aphasia. Adding the LLM features improves the models’ efficacy in predicting 
presence, subtypes, and severity of aphasia. We hope our investigation will lead to more nuanced questions on 
pinpointing NLP’s role in clinical research.

Data availability
All the data in this study are drawn from the AphasiaBank (https:// talkb ank. org/ DB/#), MacWhinney, B., 
Fromm, D., Forbes, M., & Holland, A. (2011). AphasiaBank: Methods for studying discourse. Aphasiology, 25, 
1286–1307. The script for the analysis in this paper is available online: https:// doi. org/ 10. 17605/ OSF. IO/ KSV7P.
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