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A B S T R A C T

Purpose: Speech fluency has important diagnostic implications for individuals
with poststroke aphasia (PSA) as well as primary progressive aphasia (PPA),
and quantitative assessment of connected speech has emerged as a widely
used approach across both etiologies. The purpose of this review was to pro-
vide a clearer picture on the range, nature, and utility of individual quantitative
speech/language measures and methods used to assess connected speech flu-
ency in PSA and PPA, and to compare approaches across etiologies.
Method: We conducted a scoping review of literature published between 2012
and 2022 following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews guidelines. Forty-five studies
were included in the review. Literature was charted and summarized by etiology
and characteristics of included patient populations and method(s) used for deri-
vation and analysis of speech/language features. For a subset of included arti-
cles, we also charted the individual quantitative speech/language features
reported and the level of significance of reported results.
Results: Results showed that similar methodological approaches have been
used to quantify connected speech fluency in both PSA and PPA. Two hundred
nine individual speech-language features were analyzed in total, with low levels
of convergence across etiology on specific features but greater agreement on
the most salient features. The most useful features for differentiating fluent from
nonfluent aphasia in both PSA and PPA were features related to overall speech
quantity, speech rate, or grammatical competence.
Conclusions: Data from this review demonstrate the feasibility and utility of quanti-
tative approaches to index connected speech fluency in PSA and PPA. We identified
emergent trends toward automated analysis methods and data-driven approaches,
which offer promising avenues for clinical translation of quantitative approaches.
There is a further need for improved consensus on which subset of individual fea-
tures might be most clinically useful for assessment and monitoring of fluency.
Supplemental Material: https://doi.org/10.23641/asha.25537237
Among persons with aphasia (PWA), many experi-
ence difficulties with verbal expression that render every-
day communication effortful, inefficient, and stressful
(Cahana-Amitay et al., 2011; Laures-Gore & DeFife,
2013). Verbal expressive impairments are the hallmark
characteristic of nonfluent subtypes of aphasia, in contrast
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to fluent subtypes in which spontaneous connected speech
is relatively more preserved though still affected by princi-
pal lexical retrieval deficits (National Institute on Deafness
and Other Communication Disorders, 2017). Although this
fluent/nonfluent distinction is a simplification of the more
nuanced clinical symptoms that occur across aphasia sub-
types (Poeck, 1989; Tremblay & Dick, 2016; Wilson et al.,
2022), it has persisted in part because speech fluency
remains highly salient to patients and clinicians. For PWA,
nonfluency is experienced as a significant disability with
deleterious effects on functional communication as well as
ght © 2024 American Speech-Language-Hearing Association 1
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social consequences (Brandenburg et al., 2017; Harmon
et al., 2016; Zraick & Boone, 1991). For clinicians, fluency
classifications are a crucial source of diagnostic information
(Gordon, 1998; Gordon & Clough, 2022). In fact, fluency
continues to be an important construct for diagnosis regard-
less of the etiology of the aphasia. In the poststroke aphasia
(PSA) population, umbrella terms of “fluent” or “nonflu-
ent” often serve as a critical step in guiding the decision
about specific aphasia subtypes (e.g., Broca’s, Wernicke’s,
anomic, conduction). In the primary progressive aphasia
(PPA) population, the three main variants can be at least
partially differentiated along a continuum of fluency, from
nonfluent (nonfluent variant) to variably fluent (logopenic
variant) to fluent (semantic variant; Gorno-Tempini et al.,
2011). Given its functional and clinical salience in both post-
stroke and progressive aphasia, speech fluency is an impor-
tant construct to assess, monitor, and treat among all PWA.

Speech fluency in aphasia is a multidimensional con-
struct that is determined by various speech and language
factors, primarily including motor speech function, gram-
matical competence, and lexical retrieval ability. This con-
ceptualization has been articulated from theoretical and
clinical perspectives (Feyereisen et al., 1991; Goodglass &
Kaplan, 1972; Gordon, 1998), and also borne out by data-
driven analyses of large numbers of individuals with PSA
(Casilio et al., 2019; Clough & Gordon, 2020; Gordon,
2020; Gordon & Clough, 2020; Mirman et al., 2019;
Vermeulen et al., 1989). The PPA literature conceptualizes
fluency as largely dependent on a combination of syntax
and motor speech, as these are the two core criteria for
separating out the nonfluent variant (nfvPPA) from the
more fluent logopenic (lvPPA) and semantic (svPPA) vari-
ants (Gorno-Tempini et al., 2011; Mesulam, 2001). Lexical
retrieval is considered to be a main contributor to the variable
fluency of logopenic variant PPA. However, in comparison
to nfvPPA, this subtype is still typically considered a fluent
one owing to spared syntax and motor speech function
(Henry & Gorno-Tempini, 2010). Another important nuance
relevant to fluency in PPA is that unlike in most cases of
PSA, isolated motor speech impairment (i.e., in the absence
of aphasia) can be a presenting sign and many, though not
all, researchers recognize this presentation with a unique diag-
nostic designation of primary progressive apraxia of speech
(PPAOS; Duffy et al., 2015; Josephs et al., 2012, 2014).

Despite critical advancements in the theoretical
understanding of fluency, it remains difficult to measure
speech (non)fluency reliably, accurately, and efficiently in
PWA. The current clinical gold standard for fluency
assessment relies on subjective clinician judgment, via
either gestalt judgment or qualitative ratings on standard-
ized fluency scales such as the Western Aphasia Battery–
Revised (WAB-R; Kertesz, 2007) or Boston Diagnostic
Aphasia Examination (Goodglass et al., 2001). Such
�2 American Journal of Speech-Language Pathology 1–38
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metrics of rated fluency require expert assessment and
interpretation on the part of trained speech-language
pathologists and even then, are prone to unreliability
across typical clinician raters (Gordon, 1998; Trupe,
1984). Moreover, the most widely used fluency rating
scale for the PSA population—the WAB-R Fluency
scale—combines aspects of word-finding, grammatical
competence, paraphasias, and motor speech function into
a single, pseudoquantitative scale (Casilio et al., 2019).
The conflation of each of these different speech and lan-
guage domains is likely one major reason why the WAB-R
fluency scale is virtually unused as a measure of fluency in
PPA, wherein grammatical competence and motor speech
function dissociate in important diagnostic ways from
word-finding and paraphasic errors (Gorno-Tempini et al.,
2011; Grossman, 2012; Josephs et al., 2012; Mesulam,
2001; Mesulam et al., 2009). Importantly, more recent
attempts at auditory-perceptual ratings of connected speech
have demonstrated much improved reliability and the abil-
ity to capture a multitude of different aspects of connected
speech without conflating them (Casilio et al., 2019). Still,
standardized and semistandardized rating scales are inher-
ently limited by their categorical nature; they cannot cap-
ture fine-grained nuances in speech fluency in the same
way that more continuous quantitative metrics can.

Due in large part to the limitations of existing rating
scales for fluency, there has been a decades-long trend
toward quantification of fluency in aphasia. Quantitative
metrics combine both a numeric value and unit of mea-
surement. For example, a clinician interested in quantita-
tively assessing speech rate in a connected speech sample
may calculate the average rate of speech as words or sylla-
bles per second, a quantitative measure. This is in contrast
to a more qualitative approach of assessing speech rate as
“fast” or “slow” through a gestalt auditory-perceptual
decision paradigm. Even when a numerical value is
assigned to different categories of auditory-perceptual
judgment (e.g., rating speech rate on an operationalized
1–5 scale), these remain inherently qualitative perceptual
ratings. Notably, quantification and subjective clinical judg-
ment are not mutually exclusive. As an example, a clinician
counting the number of distorted phonemes in a speech
sample is making subjective decisions about what consti-
tutes a phonemic distortion; however, the resultant metric
combines both a numeric value and unit of measurement
and can thus be considered a quantitative measure.

Within the aphasia literature to date, quantification
has most typically involved linguistic analyses based on
detailed transcription and coding of connected speech for
lexical, syntactic, and semantic features (Bastiaanse et al.,
1996; MacWhinney et al., 2011; Miller et al., 2015; Prins
& Bastiaanse, 2004; Saffran et al., 1989; Thompson et al.,
1997; Wilson et al., 2010; Yorkston & Beukelman, 1980).
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Quantitative Production Analysis (QPA) was one of the
first such quantitative linguistic approaches, and it pro-
vided a protocol for transcription and analysis of con-
nected speech in aphasia with a particular focus on syn-
tactic elements (Rochon et al., 2000; Saffran et al., 1989).
QPA features are used, for example, to summarize the fre-
quency of occurrence of morphosyntactic elements (e.g.,
proportion of verbs inflected), complex or grammatical
utterances (e.g., proportion of well-formed sentences), or
various lexical types (e.g., proportion of closed-class
words; Rochon et al., 2000). More recently, approaches to
linguistic quantification have focused on automating the
calculation of QPA and other features—the most notable
example of this type of approach is the Computerized
Language Analysis (CLAN) program. CLAN takes as
input a detailed manual transcription and uses a variety of
built-in programs or customizable command-line analysis
options to output quantitative features related to phonol-
ogy, morphosyntax, syntax, as well as macrostructural dis-
course measures (MacWhinney, 2018). As with QPA, the
connected speech task types from which these measure
types are typically derived are semispontaneous in nature,
including single picture description, story retell, as well as
semistructured interviews (MacWhinney & Wagner, 2010;
Stark, 2019). More recently, quantitative approaches have
also been focused on more detailed acoustic features as
means by which to measure the rate and rhythm of con-
nected speech (Angelopoulou et al., 2018; Cordella et al.,
2017, 2019; Feenaughty et al., 2021; Mack et al., 2015;
Yunusova et al., 2016), which is understood to be a criti-
cal contributor to overall speech fluency (Gordon, 2020;
Park et al., 2011; Wagenaar et al., 1975). Acoustic-based
approaches have included such measures as subcomponent
measures of speech rate (Cordella et al., 2017; Feenaughty
et al., 2021) and detailed pause metrics (Angelopoulou
et al., 2018; Feenaughty et al., 2021; Mack et al., 2015;
Yunusova et al., 2016), including frequency and location
of both silent and filled pauses. Similar to linguistic
approaches, quantitative acoustic approaches have typi-
cally relied on semispontaneous connected speech samples
as the basis from which individual acoustic measures are
derived. These acoustic features are particularly useful for
capturing motor speech aspects of connected speech, which
were traditionally neglected in text-based quantitative anal-
ysis approaches. Whether analysis is focused on acoustic or
linguistic features, there is general optimism that the inclu-
sion of quantitative features can augment clinician judg-
ments of fluency and thereby improve current approaches
to fluency assessment in aphasia (Gordon & Clough, 2022).

Although consensus is emerging on the utility of
quantitative speech and language measures to complement
and inform clinicians’ judgments on fluency, there remain
several unresolved questions and barriers that hinder
Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/202
clinical adoption of such quantitative approaches. For
one, there is limited information available on the compar-
ative time intensiveness of individual measures, in terms
of whether and to what degree they require manual tran-
scription or other expert-driven processing (e.g., processing
of transcripts through specialized analysis pipelines). This
lack of information leads to an assumption that quantita-
tive analysis approaches are uniformly time-consuming,
which according to a comprehensive recent survey is likely
a major barrier to clinical uptake (Gordon & Clough,
2022). Second, although dozens of individual features have
been investigated, there has not been a comprehensive sum-
mary of findings across studies to determine which measures
are most clinically useful to detect (non)fluency in either
PSA or PPA populations. Finally, although fluency is an
important criterion for diagnosis of both PSA and PPA, few
reports have directly compared fluency in these populations
(Ingram et al., 2020), and none to our knowledge none have
done so on a meta-analytic level across multiple studies. In
practice, clinicians most often assess and treat aphasias of
different etiologies and it is therefore important for them to
have evidence-based guidance on the appropriateness and
transferability of a given assessment or treatment approach
for nonfluency. To better facilitate clinical uptake of quanti-
tative approaches for assessing fluency in the future, it is
critical to understand from the existing research literature
which features are most useful, how these features may be
measured, and whether these features are shared across the
two main aphasia etiologies.

The purpose of this scoping review is to address
these gaps in the current literature and provide a clearer
picture of what types of features are being used to assess
connected speech fluency in PSA and PPA, as well as the
methods used to derive and analyze these features. As part
of this review, we also report on the utility of individual
quantitative measures to distinguish between fluent and
nonfluent PWA, as determined via a summary of the
reported statistical significance of each individual feature
across all studies. Our review additionally includes a com-
parative discussion of approaches and features used in PSA
versus PPA populations. Finally, we used our findings to
offer preliminary guidance to clinicians and researchers
who are looking to integrate quantitative measures of
speech fluency as part of the assessment process.

Aims of the Current Review

This scoping review sought to characterize quantita-
tive approaches used to assess connected speech fluency in
aphasia in recent literature (2012–2022), including both
PSA and PPA etiologies. The development of this overarch-
ing aim was informed by a combined Population, Phenome-
non of Interest, Context (PICo)/Patient, Intervention, Com-
parison, Outcome, Time (PICOT) framework, which we
Cordella et al.: Fluency in Aphasia Scoping Review 3
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then used to generate corresponding search terms (Schardt
et al., 2007). The specific aims of the study were to:

1. Characterize individual quantitative features used to
index (non)fluency and the transcription and analy-
sis methods used to derive these features.

2. Summarize utility of individual features to differenti-
ate fluent and nonfluent aphasia subgroups.

3. Compare and contrast the types of quantitative fea-
tures and methods of derivation used in studies of
PSA versus PPA.
Method

Protocol and Registration

In conducting this scoping review, we developed an
a priori protocol following the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis Extension for
Scoping Reviews guidelines (Tricco et al., 2018). The pro-
tocol was prospectively registered on the Open Science
Framework on June 30, 2022 (https://osf.io/qxu9y/?view_
only=ff58a4ba8de547219fe69ea0bc466f2c).

Study Eligibility

Inclusion/Exclusion Criteria
To be included as part of this review, studies needed

to have a focus on connected speech fluency in an
acquired aphasia population (PSA or PPA). Peer-reviewed
articles were included if they were: (a) published between
January 1, 2012, and July 1, 2022; (b) written in English,
though language of study participants was unrestricted; (c)
reported on at least one quantitative feature (i.e., includes
both a numerical value and corresponding unit of mea-
surement) used to measure connected speech fluency or its
main contributing components; (d) extracted quantitative
feature(s) from a spontaneous or semispontaneous con-
nected speech task; and (e) used quantitative feature(s) to
differentiate or characterize (non)fluency using quantitative
speech/language features, via a direct-groups comparison of
fluent and nonfluent aphasia subgroup(s), correlation analy-
sis between a continuous clinician-rated metric of fluency
(e.g., WAB-R Fluency) and a quantitative measure, regres-
sion analysis, dimensionality reduction, or machine learning
(ML) approach. For the purposes of this review, nonfluent
groups included individuals with subtype diagnoses of
global, Broca’s, transcortical motor aphasia; nfvPPA; indi-
viduals with WAB-R Fluency scores of 0–4; individuals
labeled as “nonfluent” by the authors; and aphasia + AOS
(cf. aphasia alone). Fluent groups included individuals with
subtype diagnoses of conduction, anomic, Wernicke’s,
transcortical sensory aphasia; lvPPA, svPPA; individuals
�4 American Journal of Speech-Language Pathology 1–38
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with WAB-R Fluency scores of 5–10; and individuals
labeled as “fluent” by the authors. We additionally consider
unimpaired healthy controls to be a fluent subgroup. We
required specific statistical comparisons to ensure the avail-
ability of data that would inform our second research ques-
tion regarding the utility of individual quantitative features
to proxy nonfluency.

Papers were excluded from this review if they (a)
were a case study, case series, small cohort study (i.e.,
reported on < 10 total participants with aphasia or < 5 in
any one aphasia subgroup), or review; (b) included only
nonquantitative features to index connected speech flu-
ency, such as auditory perceptual rating scales; (c) derived
fluency-related quantitative features from a highly con-
trolled experimental task (e.g., sentence completion, read
passage, other nonspontaneous speech task, spontaneous
speech task) under atypical conditions (e.g., delayed audi-
tory feedback, other perturbation), or from a generative
fluency task, as these task types yield nonnatural speech;
(d) focused primarily on fluency in a population other
than PSA/PPA (e.g., Alzheimer’s disease, corticobasal syn-
drome, stuttering/cluttering, pediatric populations), or in
atypical etiologies/presentations of aphasia (e.g., right-
hemisphere stroke only, gene mutations, transient apha-
sia); or (e) focused primarily on phonological processing,
morphosyntax, cohesion, coherence, informativeness, com-
munication accommodation, gesture, or other subcon-
struct tangential to speech fluency. This review was agnos-
tic to the presence of neuroimaging findings related to con-
nected speech fluency; however, studies were excluded if the
primary focus of the study was on neuroimaging and the
study did not at least include a behavioral-only between-
groups statistical comparison in addition to imaging findings.

The literature search was limited to articles pub-
lished since 2012 due to (a) the focus on modern quantita-
tive approaches, which have evolved significantly in the
past decade; and (b) the publication in 2011 of the consen-
sus criteria for the diagnosis of PPA and its main variants
(Gorno-Tempini et al., 2011). This was a seminal publica-
tion that altered diagnostic practices and terminology for
PPA worldwide, and therefore marked a critical shift in
categorization and reporting in this population, including
within the fluency domain.

Taken together, the inclusion/exclusion criteria for
the current study were aimed at identifying modern
approaches to the quantification of connected speech flu-
ency in PSA and PPA. Because an aim of the study
focuses on the analysis of individual features and their
utility to differentiate fluent and nonfluent aphasia groups,
we excluded case studies and very small-N studies since
these either inherently do not include a statistical compari-
son between a nonfluent and fluent group (case studies) or
are liable to be underpowered to detect a between-groups
4, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 
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difference (small-N studies) and may thus bias aggregate
results regarding the utility of individual features to make this
between-groups fluency distinction. Though out of scope of
the current study for these reasons, case studies and small-N
studies nonetheless contribute important information about
quantification approaches and features.

Terminological Considerations in PPA
With regard to the PPA literature, we recognize

PPAOS as a separate diagnostic entity (cf. nfvPPA; Duffy
et al., 2015; Josephs et al., 2012, 2014). Because the focus
on this scoping review is fluency in aphasia, we excluded
studies focused on PPAOS and its comparison to more
fluent, but still grossly nonfluent, subtypes (e.g., progres-
sive apraxia of speech with agrammatism). We acknowl-
edge that due to terminological preferences of individual
authors, some patients with isolated AOS may be classi-
fied as having nfvPPA, as they technically meet consensus
diagnostic criteria requiring either AOS or agrammatism
(Gorno-Tempini et al., 2011). Despite this, we nonetheless
include for analysis in this review any nfvPPA groups, and
make the broad but evidence-based assumption that as a
whole, this group of patients is likely to have co-occurring
aphasia and AOS (Duffy et al., 2014; Grossman, 2012;
Mesulam et al., 2012; Montembeault et al., 2018; Ogar
Table 1. Database search terms using a PICO(T)/PICo framework.

Patient, population, or
problem

Phenomenon of
interest Context

aphasia (poststroke &
progressive)

(non)fluency connected speech

aphasi* fluen* spontaneous speech

nonfluen* connected speech

speech production

picture description

story

narrative

semistructured

discourse

Note. Italicized text used to denote actual search terms entered. PIC
Population, Phenomenon of Interest, Context; N/A = not applicable; QPA
§Post hoc filter.
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et al., 2007; Tee & Gorno-Tempini, 2019; Vandenberghe,
2016). This decision also makes for a fair comparison to
PSA groups included in the review, as these likewise did
not include any poststroke pure AOS groups but did
include groups with concomitant motor speech impairment
reported alongside an aphasia diagnosis. As a final point,
we also recognize alternative equivalent or quasi-equivalent
terminology in PPA, such as progressive nonfluent aphasia
for nfvPPA and semantic dementia for svPPA.

Information Sources and Search Strategy

To identify potentially relevant articles, the following
databases were searched systematically: PubMed (U.S.
National Library of Medicine); Web of Science Core Col-
lection (Clarivate Analytics); APA PyschInfo (EBSCO);
Cumulative Index of Nursing and Allied Health Literature
(CINAHL; EBSCO); and Embase (Elsevier). A comprehen-
sive search strategy was developed in consultation with an
experienced research librarian and refined through iterative
team discussions. We structured search terms around the
PICO(T)/PICo question components and generated a list of
terms that included main concepts related to the research
question: aphasia, nonfluency, connected speech, and quan-
titative speech and language features (Schardt et al., 2007).
Outcome Time

quantitative speech and language features 2012–present

quantitative N/A§

quantif*

quantitative measure*

quantitative metric*

quantitative feature*

objective measure*

objective metric*

objective feature*

speech measure*

speech metric*

speech feature*

speech signal*

linguistic measure*

linguistic feature*

lexical measure*

lexical feature*

acoustic*

paus*

QPA

automat*

O(T) = Patient, Intervention, Comparison, Outcome, Time; PICo =
= Quantitative Production Analysis; * = truncation wildcard.

Cordella et al.: Fluency in Aphasia Scoping Review 5
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As part of our search, we additionally included common
variations on these terms (see Table 1). The complete
search syntax used for each of the databases is detailed in
Supplemental Material S1. Note that the EBSCO databases
(APA PyschInfo, CINAHL) were searched jointly using the
same syntax. In addition to the systematic keyword searches,
we also manually scanned the reference lists of included arti-
cles to identify relevant articles that may not have been iden-
tified in the systematic searches. Final search results were
exported for each database search and uploaded to Covi-
dence, a collaborative web-based review management soft-
ware (Veritas Health Innovation, 2022). All duplicates were
automatically detected across multiple bibliographic imports.

Selection of Sources of Evidence

We used Covidence to implement the two-step
screening and selection process for this review:

Step 1: Title/abstract screening. All nonduplicate arti-
cles imported into Covidence underwent simultaneous title/
abstract screening. Titles and abstracts were screened indepen-
dently by the first and second authors and evaluated for rele-
vance with reference to the inclusion/exclusion criteria. If it
was unclear whether a study met all inclusion criteria or any
exclusion criteria, raters erred on the side of including it for
subsequent full-text review. Disagreements between the two
independent raters were tracked in Covidence and resolved
by consensus. Consensus meetings took place approximately
2 weeks after completion of initial reviews and raters were
blinded to their initial decisions to include/exclude.

Step 2: Full-text screening. All articles that passed
the title/abstract screening stage subsequently underwent
full-text review. Full-text articles were again screened inde-
pendently by the first and second authors and evaluated
in reference to the inclusion/exclusion criteria. As before,
all inclusion criteria had to be met for a study to be
included and only one exclusion criteria had to be met for
the study to be excluded. Reasons for exclusion were doc-
umented for each excluded article at this stage. Disagree-
ments between the independent raters were tracked in
Covidence and resolved by consensus between the two
original reviewers. Consensus meetings for this stage took
place approximately 1 week after completion of initial
reviews, and as before, raters were blinded to their initial
decisions. All articles (n = 45) that passed the full-text
screening were included in this scoping review.

Data Charting Process

A data extraction template was developed in Covi-
dence by the first and second authors to guide what pieces
of critical information to extract from each article. The
data extraction template was trialed for a randomly
selected subset (n = 5) of included articles. For this subset
�6 American Journal of Speech-Language Pathology 1–38

Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/202
of articles, the first and second authors jointly extracted
data, discussed the results, and made appropriate revisions
before publishing a final data extraction template. All
remaining included articles were divided between the first
and second authors for data extraction.

For each included article, one of the first two
authors extracted and charted the following information:
(i) etiology of patient population (i.e., PSA; progressive
aphasia); (ii) characteristics of included patient groups
(i.e., fluent/nonfluent subtype diagnoses, total N of partici-
pants, language of study participants, whether/not aphasia
severity was reported; whether/not motor speech severity
was reported); (iii) method(s) used for derivation of indi-
vidual quantitative speech/language features (i.e., con-
nected speech task used; degree of automation for tran-
scription and analysis; whether/not transcription time was
reported; which automated analysis method was used);
and (iv) method(s) used for statistical analysis of quantita-
tive data. Supplemental Material S2 shows the possible
categories and detailed options available to raters for
charting of items (i)–(iv). In addition to the options listed,
each item had an “Other” response option that allowed
raters to write in free-form information. Multiselect capabil-
ities were also enabled for all data items. If raters could not
find information for any given data item, these were left
blank and treated as missing data in subsequent analyses.

For (iv), we categorized the statistical methodologies
into the following types determined a priori by the first
two authors: group comparisons (e.g., t tests, analyses of
variance), correlation analysis (e.g., associating a quantita-
tive attribute with a clinician-rated fluency metric), regres-
sion, ML, and dimensionality reduction (e.g., principal
component analysis [PCA], factor analysis). We consider
ML techniques as distinct statistical models designed to
enhance their predictive accuracy through increased data
exposure (Miller et al., 2023). This category encompasses
straightforward classification strategies that use a single quan-
titative predictor feature, as well as those that do not imple-
ment cross-validation. Cross-validation, a process in which
models are trained on specific subsets of available data and
tested on separate, independent data subsets, is widely recog-
nized as the ideal method for evaluating the generalizability
of an ML model to new data (Bzdok et al., 2017).

It is important to note that we distinguish tradi-
tional regression from ML techniques to differentiate
between those that primarily aim to infer predictor-
outcome relationships and those that use regression pri-
marily to predict an outcome while minimizing prediction
error. Similarly, while dimensionality reduction techniques
can also form part of ML analysis workflows, we catego-
rize them separately here to highlight studies that utilize
dimensionality reduction as a final-stage analysis, rather
than as a feature selection technique for ML applications.
4, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



For included studies (n = 33) that reported results
from a groups difference statistical approach between a
nonfluent versus fluent aphasia subgroup(s) or from a cor-
relation approach between a quantitative feature and a
clinician-rated fluency metric, see item (iv), above, we
charted three additional items per article: (a) individual
quantitative speech/language features reported; (b) cate-
gory of individual speech/language feature; and (c) level of
significance of reported result. Items (a) and (c) were
charted by either of the first two authors during the
extraction process; item (b) was assigned by the first
author after all individual features had been extracted and
following consultation and iteration on appropriate super-
ordinate categories with other members of the author
team. Supplemental Material S3 shows the possible cate-
gories and/or assessment schema used by raters for items
(a)–(c). For item (a), we recorded the verbatim feature
name as reported by authors in the paper. Subsequently,
after all raw data for this item had been extracted, the
first author undertook a manual renaming process to
equate identical and near-identical features (e.g., “WPM”

and “speech rate” were renamed to a single “speech rate”
feature). This renaming process allowed us to examine
patterns and trends in usage of variables over and above
simple terminological differences. Importantly, we applied
a stringent threshold for what was considered identical or
near identical; specifically, we did not consider normalized
and nonnormalized feature variants (e.g., # nouns and %
nouns) as equivalent because we believed normalization
for total quantity of speech output was likely to have an
impact on the significance of reported results. We also did
not consider features equivalent if they measured the same
construct but over different word or sentence contexts
(e.g., % pause between sentences vs. % pause within sen-
tences). Likewise, within any given study, all features were
treated as nonidentical even if highly similar in deference
to the original authors’ conceptualization of distinctness.
A full list of all verbatim features and manual renaming
are shown in Supplemental Material S6, tab: “All Fea-
tures (PSA + PPA).” For item (b), we recorded the super-
ordinate descriptive category if provided by the authors.
We first identified all studies that reported at least two
superordinate categories into which individual features
Table 2. Scale for recording reported significance per individual quantitat

Significance of reported result Descript

Significant (positive) Significant (p < .05) group difference
negative correlation

Null Nonsignificant (p > .05) group differen
correlation

Significant (negative) Significant (p < .05) group difference
positive correlation

Not reported Significance not assessed and/or rep
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were grouped (n = 14 studies; see Supplemental Material
S4). From these 14 articles, we extracted, cross-referenced,
and reduced these categories to seven broad “constructs,”
maintaining terminology used by individual author teams
wherever possible: quantity, rate/prosody, speech errors,
grammatical competence, morphological competence, lexi-
cal retrieval ability, and informational content. The author
team finalized these seven constructs/categories after dis-
cussion and iteration. We then assigned individual features
into one of these constructs, again with preference to the
original papers’ designations, if provided. No feature was
allowed to be shared across more than one construct,
though we acknowledge that this is a simplification of
some more complex quantitative features. The category
assignment for each individual feature is listed in Supple-
mental Material S6, tab: “All Features (PSA + PPA).”
These categories are used primarily to discuss individual
feature results relative to higher order speech and lan-
guage constructs in the Discussion section. For Item (c),
we recorded the level of significance reported by the
authors for every quantitative feature per study, summa-
rized according to a simplified scale (see Table 2). Thus,
for every individual feature, we charted a numerical value
that captured both the magnitude and direction of signifi-
cance. This approach was modeled after a recent scoping
review (Low et al., 2020) and enabled the comparison of
results across studies by individual feature and feature cat-
egory. The mean significance of a given feature across all
studies in which it is reported gives an idea of its utility in
differentiating fluent and nonfluent aphasia subgroups, and
has the advantage of down-weighting the utility of mea-
sures for which results are either null or directly contradic-
tory (e.g., one study shows a significant effect in the direc-
tion fluent > nonfluent, another study shows a nonfluent >
fluent significant effect).

Critical Appraisal of Individual
Sources of Evidence

As this is a scoping review and not a systematic
review, we did not formally assess methodological quality
or risk of bias as part of a critical appraisal of included
articles. We focused instead on providing an overview of
ive feature.

ion Assigned numerical value

(higher nonfluent vs. fluent) OR 1

ce (nonfluent vs. fluent) or 0

(lower nonfluent vs. fluent) OR −1

orted –
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extant literature as it pertains to our research question, in
line with current guidelines for scoping reviews (Tricco
et al., 2018). However, for the subset of 33 included stud-
ies that reported results from a groups difference statistical
approach between a nonfluent versus fluent aphasia sub-
group(s)—and from which we extracted and analyzed data
about individual speech measures—we did chart addi-
tional details about methodological approach. This addi-
tional detail includes (a) total N of participants with apha-
sia; (b) whether or not data was used from a shared public
data set (e.g., AphasiaBank); (c) whether or not there was
significant author overlap among other of the included
subset articles (indicating likelihood of overlapping data-
sets); (d) task type used to derive individual quantitative
features; (e) method of transcription and extraction of
individual features; (f) N or raters/transcribers involved in
analysis; and (g) in the event of two or more raters/
transcriber, whether or not reliability was reported. The
goal of providing this additional level of detail was to offer
a critical and transparent accounting of methodological
decisions and details that could impact readers’ judgments
of individual study quality and/or risk of biased results (e.g.,
resulting from use of same or similar data sets). We also
use this additional detail to ground key points in the Dis-
cussion section about ways in which future research in this
topic area could be made methodologically more rigorous.
Results

Selection and Characteristics of
Sources of Evidence

Five hundred and twenty-eight studies were returned
based on search criteria across all five databases, with an
additional four articles added later based on manual cita-
tion searching of included articles. Following automatic
removal of 219 duplicate records, 309 total studies under-
went title/abstract screening. All 309 titles/abstracts were
reviewed independently (by authors C.C. and L.D.) and
included or excluded based on prespecified criteria, as
detailed in Method section. Interrater agreement for the
title/abstract screening stage was 87% and all conflicts
were resolved by consensus. A total of 234 studies were
excluded following the title/abstract screening process. The
remaining 75 studies underwent full-text review, following
the same procedure as the title/abstract review (i.e., inde-
pendent decisions by C.C./L.D., conflicts resolved by con-
sensus). Interrater agreement for the full-text screening
stage was 85%. At this stage, specific reason(s) for exclu-
sion were also noted. Forty-five articles survived the full-
text screening stage and were included in this scoping
review. The full process of identifying and screening
sources of evidence is depicted in Figure 1.
�8 American Journal of Speech-Language Pathology 1–38
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For each included article (n = 45), we charted the
four primary data items (i.e., etiology, characteristics of
patient groups, methods used for derivation of quantita-
tive features, methods used for statistical analysis). Tables
3–6 show the raw charted data, and below, we summarize
the key findings for the primary data items.

Synthesis of Sources of Evidence

Etiology and Characteristics of Included
Patient Groups

Of the 45 included articles, 23 included only patients
with PSA (see Table 3), 21 included only patients with
PPA (see Table 4), and one study (Ingram et al., 2020)
included both PSA and PPA patient populations. Across
all studies, the median N of the aphasia cohort was 36
(M = 59.9, range: 10–274); median N for poststroke stud-
ies was 46 (M = 78.4, range: 10–274), compared to a
median N of 33.5 (M = 39.7, range: 12–88) for progressive
studies. The gender distribution (47% female) and age
ranges (30–87 years) were consistent with population-level
statistics of stroke and aphasia incidence (Reeves et al.,
2008). Crucially, although our inclusion/exclusion criteria
were agnostic to aphasia chronicity, only two studies
included any nonchronic (i.e., acute/subacute) individuals;
even in these studies, most patients had chronic aphasia.
The language of study participants was likewise unre-
stricted for purposes of this review, but data were none-
theless heavily skewed toward English (87% of all studies).

Besides basic demographic information, we also
charted whether authors reported speech and language
severity for included patient groups. The availability of
this information was considered important to track, as
(non)fluency is likely impacted by overall speech/language
severity above and beyond subtype diagnoses and fluent
versus nonfluent umbrella groupings. Moreover, because
speech and language severity can and do dissociate (e.g.,
individual with mild language impairment with moderate
apraxia of speech), we tracked the reporting of motor
speech severity separately from the reporting of language
severity. Results revealed that a majority (82%) of studies
robustly reported aphasia severity, using either a standard-
ized summary metric (e.g., WAB-R Aphasia Quotient,
Clinical Dementia Rating Language subscore) or via
detailed reporting of standardized tests to cover a broad
range of specific language domains (e.g., syntax, phonolo-
gical processing, lexical retrieval, etc.). By contrast, only
36% of all studies explicitly reported motor speech sever-
ity, using either binary clinician judgments (presence/
absence), ordinal ratings (mild/moderate/severe), validated
rating scales such as the Apraxia of Speech Rating Scale
(Strand et al., 2014), or other robust and well-described
approaches. The reporting of motor speech severity was
somewhat more consistent among the progressive studies
4, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow diagram detailing identification, screening, and selection
of articles for inclusion in the current review.
(41%) compared to the poststroke studies (29%). A sum-
mary of these results by etiology is reported in Table 7.

Method(s) Used for Derivation of Individual
Speech/Language Features

Of the connected speech tasks used to derive quanti-
tative speech/language features, the most used (n = 23)
was a single picture description task (e.g., Cookie Theft),
with a picture sequence/story retell task (e.g., Cinderella
story) being the second most used (n = 22). Six studies uti-
lized a semistructured interview task. Eight studies
reported results for more than one task type.

Besides task type, we also charted subitems related
to the transcription and analysis process of connected
speech data, as these processes are integral to understand-
ing the derivation of quantitative speech/language features.
These results are reported in Figure 2. Note that a single
study could use more than one derivation method (e.g.,
Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/202
one method for acoustic features, another for text-based
feature). For those studies that did include an automation
component in their analyses, we also recorded the
approach used and did a post hoc grouping to further
characterize these methods (see Figure 3). In brief, results
showed that a plurality of studies in both the poststroke
and progressive literatures derived quantitative speech/
language features through a process of manual expert
transcription, with subsequent analysis automated. Within
this category, the Codes for the Human Analysis of Tran-
scripts to CLAN analysis pipeline was the most used
(MacWhinney, 2000, 2018). A sizable percentage of all
poststroke and progressive studies included no or minimal
automation, relying on manual expert transcription and
manual counts or measurements of specific speech/
language features. A distinct minority of all studies uti-
lized a more fully automated approach that either did not
require expert transcription or automated the transcription
Cordella et al.: Fluency in Aphasia Scoping Review 9

4, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



(table continues)

�

Table 3. Charted data: characteristics of patient groups, poststroke studies.

Study Nonfluent groups included Fluent groups included
N (aphasia

only)
Language of
participants

Aphasia severity
reported?

Motor speech severity
reported?

Alyahya et al., 2020 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; mixed
nonfluent aphasia

Anomic aphasia;
conduction aphasia; TCS
aphasia; healthy controls

46 English Detailed subdomain scores Not reported; Other:
excluded pts with
“severe motor-speech
disorders”

Alyahya et al., 2021 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; mixed
nonfluent aphasia

Anomic aphasia;
conduction aphasia; TCS
aphasia

46 English Other: BDAE global severity
rating

Not reported; Other:
excluded pts with
“severe motor-speech
disorders as described in
the participant’s clinical
workup”

Clough & Gordon, 2020 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; WAB-R
Fluency 0–5

Anomic aphasia; conduction
aphasia; Wernicke’s
aphasia; TCS aphasia;
WAB-R Fluency > 5

254 English WAB-R AQ Binary (presence/absence)
of AOS & dysarthria

Feenaughty et al., 2021 Broca’s/agrammatic
aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia

31 English WAB-R AQ Binary (presence/absence)
of AOS & dysarthria;
ASRS

Fromm et al., 2022 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia;
other: not aphasic by
WAB-R

168 English WAB-R AQ Not reported

Ghoreishi et al., 2020 Global aphasia; Broca’s/
agrammatic aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia

27 Other: Persian WAB-R AQ Not reported

Gleichgerrcht et al., 2021 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia;
other: not aphasic by
WAB-R

65 English WAB-R AQ ASRS; other: included as a
control in select stats
models not reported as
demographic info

Gordon & Clough, 2020 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia; TCS
aphasia

254 English WAB-R AQ Binary (presence/absence)
of AOS & dysarthria

Gordon, 2020 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia

274 English WAB-R AQ Not reported

Gordon & Clough, 2022 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia

185 English WAB-R AQ Binary (presence/absence) of
AOS & dysarthria; other:
not reported as basic
demographic delineated
in results instead

Halai et al., 2017b Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; mixed
nonfluent aphasia

Anomic aphasia; Wernicke’s
aphasia; TCS aphasia

31 English CDR Language subscore Not reported
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Table 3. (Continued).

Study Nonfluent groups included Fluent groups included
N (aphasia

only)
Language of
participants

Aphasia severity
reported?

Motor speech severity
reported?

Harmon et al., 2019 Aphasia + AOS Aphasia only (no AOS, cf.
Aphasia + AOS)

14 English WAB-R AQ Other: word syllable
duration threshold > 330
ms & subjective
judgments of sound
distortion errors

Ingram et al., 2020 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; mixed
nonfluent aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia; TCS
aphasia

106 (76
poststroke)

English Detailed subdomain scores Not reported

Kim et al., 2019 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia;
conduction aphasia

11 English WAB-R AQ Not reported

Kim et al., 2021 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia;
conduction aphasia

11 English WAB-R AQ Not reported

Kong et al., 2016 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia

Anomic aphasia; Wernicke’s
aphasia; healthy controls

24 English WAB-R AQ; other: also
CLQT language score

Not reported

Kong & Wong, 2018 Broca’s/agrammatic
aphasia; TCM aphasia

Anomic aphasia; Wernicke’s
aphasia; TCS aphasia

68 Other:
Cantonese

WAB-R AQ Not reported

Manning & Franklin, 2016 Author/clinician-defined
“nonfluent” aphasia

Author/clinician-defined
“fluent” aphasia; healthy
controls

22 English Not reported Not reported

Martinez-Ferreiro et al., 2017 TCM aphasia; Mixed
nonfluent aphasia; other:
“motor”

Mixed fluent aphasia;
healthy controls

10 Other:
Spanish

Other: clinician-defined
“mild,” “moderate”

Not reported

Mirman et al., 2019 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia

Anomic aphasia;
conduction aphasia;
Wernicke’s aphasia

46 English WAB-R AQ Binary (presence/absence)
of AOS only; other:
excluded pts with
“significant peripheral
dysarthria” AOS based
on ABA-2

Nozari & Faroqi-Shah, 2017 Other: authors lump all
participants together
predict fluency based on
continuous WAB-R
Fluency scores

Other 112 English Not reported Not reported

Zhang et al., 2021 Author/clinician-defined
“nonfluent” aphasia

Author/clinician-defined
“fluent” aphasia

16 English Not reported Not reported; other:
dysarthria excluded

Zhao et al., 2020 Global aphasia; Broca’s/
agrammatic aphasia;
TCM aphasia; mixed
nonfluent aphasia

Anomic aphasia; conduction
aphasia; Wernicke’s
aphasia; TCS aphasia

70 English Detailed subdomain scores Not reported

Zimmerer et al., 2018 Author/clinician-defined
“nonfluent” aphasia

Author/clinician-defined
“fluent” aphasia; healthy
controls

20 English Not reported Not reported

Note. TCM = transcortical motor; TCS = transcortical sensory; BDAE = Boston Diagnostic Aphasia Examination; WAB-R AQ = Western Aphasia Battery–Revised Aphasia Quotient; AOS =
apraxia of speech; ASRS = Apraxia of Speech Rating Scale; CDR = Clinical Dementia Rating; CLQT = Cognitive Linguistic Quick Test; ABA-2 = Apraxia Battery for Adults–Second Edition.
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(table continues)

�

Table 4. Charted data: characteristics of patient groups, progressive studies.

Study

Nonfluent
groups
included Fluent groups included

N
(aphasia only)

Language of
participants Aphasia severity ported?

Motor speech severity
reported?

Ash et al., 2013 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 62 English Detailed subdomain cores Not reported; Other: discuss
phonetic vs. phonemic
errors w/r/t AOS but no dx
per pt

Cho et al., 2021 nfvPPA/PNFA svPPA; Healthy controls 64 English Detailed subdomain cores Not reported

Cordella et al., 2017 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 38 English Other: Progressive hasia
Severity Scale

Binary (presence/absence) of
AOS & dysarthria

Cordella et al., 2019 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 43 English CDR Language sub ore Ordinal severity rating (mild,
moderate, etc.)

Faroqi-Shah et al., 2020 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 26 English Not reported Not reported

Fraser et al., 2013 nfvPPA/PNFA svPPA; Healthy controls 24 English Not reported Not reported

Fraser et al., 2014 nfvPPA/PNFA svPPA; Healthy controls 24 English Detailed subdomain cores Other: Those with the nfvPPA
had effortful, halting speech
with anomia, although not
all exhibited clear
agrammatism in production
or clear apraxia of speech
on formal testing

Haley et al., 2021 nfvPPA/PNFA lvPPA; svPPA 25 English WAB-R AQ Ordinal severity rating (mild,
moderate, etc.)

Hardy et al., 2016 nfvPPA/PNFA svPPA; Healthy controls 32 English Detailed subdomain cores Not reported

Ingram et al., 2020 nfvPPA/PNFA lvPPA; svPPA 106 (30 PPA) English Detailed subdomain cores Not reported

Mack et al., 2015 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 35 English WAB-R AQ Other: motor speech screening
(i.e., oral apraxia screen and
repetition of one-, two-, and
three-syllable words).
nfvPPA group perform
worse than other groups on
three-syllable words only

Marcotte et al., 2017 nfvPPA/PNFA svPPA; Healthy controls 25 English Detailed subdomain cores Not reported; Other: “nfvPPA
patients had effortful
speech”

Matias-Guiu et al., 2022 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 76 Other: Spanish CDR Language sub ore Binary (presence/absence) of
AoS & dysarthria

Nevler et al., 2019b nfvPPA/PNFA lvPPA; svPPA; Healthy controls 59 English Detailed subdomain cores Binary (presence/absence) of
AoS & dysarthria

Nevler et al., 2020 nfvPPA/PNFA Healthy controls 23 English Not reported Not reported; other: report
quant features (e.g., speech
rate) that can be proxies for
motor speech but no
clinician rating of motor
speech
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Table 4. (Continued).

Study

Nonfluent
groups
included Fluent groups included

N
(aphasia only)

Language of
participants Aphasia severity reported?

Motor speech severity
reported?

Parjane et al., 2021 nfvPPA/PNFA Healthy controls 25 English Detailed subdomain scores Other: medical chart review of
subjective characteristics
consistent with AOS

Sajjadi et al., 2012 nfvPPA/PNFA Healthy controls 12 English Detailed subdomain scores Not reported

Sitek et al., 2015 nfvPPA/PNFA lvPPA; svPPA 30 Other: Polish Not reported Not reported; other: subjective
clinician judgments of
speech errors reported as
results, not as demo/
characterization info

Themistocleous, Ficek,
et al., 2021

nfvPPA/PNFA lvPPA; svPPA; Healthy controls 44 English CDR Language subscore Not reported

Themistocleous,
Webster, et al., 2021

nfvPPA/PNFA svPPA; Healthy controls 52 English CDR Language subscore Not reported

Thompson et al., 2012 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 37 English WAB-R AQ Other: test repeating syllables
of varying complexity (out of
50 pts)

Zimmerer et al., 2020 nfvPPA/PNFA lvPPA; svPPA; Healthy controls 88 English Detailed subdomain scores Not reported

Note. nfvPPA = nonfluent variant primary progressive aphasia; PNFA = progressive nonfluent aphasia; lvPPA = logopenic variant primary progressive aphasia; svPPA = semantic
variant primary progressive aphasia; dx = diagnosis; pt = patient; AOS = apraxia of speech; WAB-R AQ = Western Aphasia Battery–Revised Aphasia Quotient; CDR = Clinical
Dementia Rating.
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(table continues)

�

Table 5. Charted data: methodological approaches to derivation and analysis, poststroke studies.

Study

Method(s) used for
statistical analysis of
quantitative data Method(s) used for derivation of individual quantitative speech/language features

Statistical approach
Connected speech task

used
Degree of automation

(transcription + analysis)
Automated analysis

method used Transcription time reported

Alyahya et al., 2020* Groups difference
and/or correlation; dimen-
sionality reduction

Single picture description
(e.g., Cookie Theft, Picnic
Scene); Picture sequence/
story retell (e.g., Cinder-
ella); Other: procedural
discourse task

Fully manual transcription &
analyses

No

Alyahya et al., 2021* Groups difference and/or
correlation

Single picture description;
Picture sequence/story
retell; Other: procedural
discourse

Fully manual transcription &
analyses

No

Clough & Gordon, 2020* Groups difference and/or
correlation; regression

Picture sequence/story retell Expert transcription (e.g.,
CHAT, SALT formats),
subsequent analyses
automated

CLAN Transcription done not as
part of study (e.g.,
AphasiaBank)

Feenaughty et al., 2021* Groups difference and/or
correlation

Single picture description Manual (nonexpert)
orthographic transcription,
subsequent analyses
automated; other: semi-
automated but requiring
manual decisions/
processing in Praat

Praat No

Fromm et al., 2022 Machine learning (ML) and/or
classification

Spontaneous free narrative;
Single picture description;
Picture sequence/story
retell; other: procedural
discourse

Expert transcription,
subsequent analyses
automated

CLAN Transcription done not as
part of study

Ghoreishi et al., 2020* Groups difference and/or
correlation

Picture sequence/story retell Fully manual transcription &
analyses

No

Gleichgerrcht et al., 2021 Dimensionality reduction Single picture description Expert transcription,
subsequent analyses
automated

Lu’s L2 Syntactic
Complexity Analyzer
(Python); Stanford
POS tagger

No

Gordon & Clough, 2020* Groups difference and/or
correlation; regression

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN Transcription done not as
part of study

Gordon, 2020 Dimensionality reduction;
other: groups difference
of individual factors

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN Transcription done not as
part of study

Gordon & Clough, 2022* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN Transcription done not as
part of study
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Table 5. (Continued).

Study

Method(s) used for
statistical analysis of
quantitative data Method(s) used for derivation of individual quantitative speech/language features

Statistical approach
Connected speech task

used
Degree of automation

(transcription + analysis)
Automated analysis

method used Transcription time reported

(table continues)

Halai et al., 2017b Dimensionality reduction Single picture description Fully manual transcription &
analyses

No, but time mentioned as
rationale for features
chosen

Harmon et al., 2019* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription,
subsequent analyses
automated; fully manual
transcription & analyses;
other: Praat

Manual transcription +
coding, but using
Praat

No

Ingram et al., 2020 Dimensionality reduction; ML
and/or classification

Single picture description Other: not specified No

Kim et al., 2019* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN No

Kim et al., 2021* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN No

Kong et al., 2016* Groups difference and/or
correlation

Picture sequence/story retell Fully manual transcription &
analyses

No

Kong & Wong, 2018 Regression Picture sequence/story retell Fully manual transcription &
analyses

No

Manning & Franklin, 2016* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

No

Martinez-Ferreiro et al.,
2017*

Groups difference and/or
correlation

Other: semistandardized
open-ended interview
questions (last job,
holidays, hobbies)

Fully manual transcription &
analyses

No

Mirman et al., 2019* Groups difference and/or
correlation

Picture sequence/story retell Fully manual transcription &
analyses

No

Nozari & Faroqi-Shah, 2017 Other: path modeling
approach most similar to
linear regression

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

CLAN Transcription done not as
part of study

Zhang et al., 2021* Groups difference and/or
correlation

Spontaneous free narrative;
single picture description;
picture sequence/story
retell

Fully manual transcription &
analyses

No
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Table 5. (Continued).

Study

Method(s) used for
statistical analysis of
quantitative data Method(s) used for derivation of individual quantitative speech/language features

Statistical approach
Connected speech task

used
Degree of automation

(transcription + analysis)
Automated analysis

method used Transcription time reported

�

Zhao et al., 2020 Dimensionality reduction Single picture description Fully manual transcription &
analyses

No

Zimmerer et al., 2018* Groups difference and/or
correlation

Other: semistructured
interview

Expert transcription,
subsequent analyses
automated

FLAT No

Note. CHAT = Codes for the Human Analysis of Transcripts; SALT = Systematic Analysis of Language Transcripts; CLAN = Computerized Language Analysis; POS = part-of-
speech; FLAT = Frequency in Language Analysis Tool.

*Study included in subanalysis of individual speech/language features based on availability of appropriate statistical comparison.
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(table continues)

Table 6. Charted data: methodological approaches to derivation and analysis, progressive studies.

Study

Method(s) used for statistical
analysis of quantitative data Method(s) used for derivation of individual quantitative speech/language features

Statistical approach Connected speech task used
Degree of automation

(transcription + analysis)
Automated analysis

method used
Transcription
time reported

Ash et al., 2013* Groups difference and/or
correlation

Single picture description (e.g.,
Cookie Theft, Picnic Scene);
Picture sequence/story retell
(e.g., Cinderella)

Fully manual transcription &
analyses; other: Praat also
used, presumably to extract
durations

Praat Yes

Cho et al., 2021* Groups difference and/or
correlation

Single picture description Expert transcription (e.g., CHAT,
SALT formats), subsequent
analyses automated

spaCy NLP library
(Python)

No

Cordella et al., 2017* Groups difference and/or
correlation; machine
learning (ML) and/or
classification

Single picture description Manual (nonexpert) orthographic
transcription, subsequent
analyses automated

Speech Pause Analysis
program (MATLAB)

No

Cordella et al., 2019* Groups difference and/or
correlation; ML and/or
classification

Single picture description Manual (nonexpert) orthographic
transcription, subsequent
analyses automated

Speech Pause Analysis
program (MATLAB)

No

Faroqi-Shah et al., 2020* Groups difference and/or
correlation

Single picture description Expert transcription, subsequent
analyses automated

No

Fraser et al., 2013 ML and/or classification Picture sequence/story retell Automated analysis not requiring
transcription; expert
transcription, subsequent
analyses automated

Lu’s L2 Syntactic
Complexity Analyzer
(Python); Stanford
POS tagger

No

Fraser et al., 2014* Groups difference and/or
correlation; ML and/or
classification

Picture sequence/story retell Expert transcription, subsequent
analyses automated

Lu’s L2 Syntactic
Complexity Analyzer
(Python); Stanford
POS tagger

No

Haley et al., 2021* Groups difference and/or
correlation; ML and/or
classification

Single picture description; Picture
sequence/story retell

Fully manual transcription &
analyses; other: Praat also
used, but following detailed
manual (narrow phonetic)
coding

Praat No

Hardy et al., 2016* Groups difference and/or
correlation

Other: spontaneous propositional
speech following structured
interview (last holiday)

Other: not enough detail provided No

Ingram et al., 2020 Dimensionality reduction; ML and/
or classification

Single picture description Other: not specified No

Mack et al., 2015* Groups difference and/or
correlation; ML and/or
classification

Picture sequence/story retell Expert transcription, subsequent
analyses automated; other: also
manual coding of pauses

NNLA No
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Table 6. (Continued).

Study

Method(s) used for statistical
analysis of quantitative data Method(s) used for derivation of individual quantitative speech/language features

Statistical approach Connected speech task used
Degree of automation

(transcription + analysis)
Automated analysis

method used
Transcription
time reported

�

Marcotte et al., 2017* Groups difference and/or
correlation; dimensionality
reduction

Other: topic-directed
interviews (what do
participants do each day)

Expert transcription, subsequent
analyses automated

Lu’s L2 Syntactic
Complexity Analyzer
(Python); Stanford
POS tagger

No

Matias-Guiu et al., 2022* Groups difference and/or
correlation; ML and/or
classification; dimensionality
reduction

Single picture description Expert transcription, subsequent
analyses automated; fully
manual transcription & analyses

Praat; SALT software No

Nevler et al., 2019b* Groups difference and/or
correlation; ML and/or
classification

Single picture description Automated analysis not requiring
transcription; fully manual
transcription & analyses

In-house (UPenn) SAD No

Nevler et al., 2020 Groups difference and/or
correlation

Single picture description Automated analysis not requiring
transcription

In-house (UPenn) SAD No

Parjane et al., 2021 Groups difference and/or
correlation

Single picture description Automated analysis not requiring
transcription; manual
(nonexpert) orthographic
transcription, subsequent
analyses automated

In-house (UPenn) SAD No

Sajjadi et al., 2012* Groups difference and/or
correlation

Single picture description; other:
semistructured interviews

Fully manual transcription &
analyses

No

Sitek et al., 2015* Groups difference and/or
correlation

Single picture description Fully manual transcription &
analyses

No

Themistocleous, Ficek,
et al., 2021

ML and/or classification Single picture description Fully automated transcription &
analyses

In-house speech-to-text
“Themis” program
(Python); Praat;
Textblob library
(Python)

No

Themistocleous,
Webster, et al., 2021*

Groups difference and/or
correlation; ML and/or
classification

Single picture description Fully automated transcription &
analyses

In-house speech-to-text
“Themis” program
(Python); NLTK
library (Python)

No

Thompson et al., 2012* Groups difference and/or
correlation

Picture sequence/story retell Expert transcription, subsequent
analyses automated

SALT No

Zimmerer et al., 2020* Groups difference and/or
correlation; ML and/or
classification

Spontaneous free narrative; other:
guided personal interview
questions

Expert transcription, subsequent
analyses automated

FLAT No

Note. CHAT = Codes for the Human Analysis of Transcripts; SALT = Systematic Analysis of Language Transcripts; NLP = natural language processing; POS = part-of-speech;
NNLA = Northwestern Narrative Language Analysis; SAD = Speech Activity Detector; UPenn = University of Pennsylvania; NLTK = Natural Language Toolkit; FLAT = Frequency in
Language Analysis Tool.

*Study included in subanalysis of individual speech/language features based on availability of appropriate statistical comparison.
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Table 7. Summary of major participant characteristics and task type findings, by etiology.

Summary measure PSA studies (n = 24)a PPA studies (n = 22)a

% studies reporting severity of aphasia 83 82

% studies reporting motor speech severity 29 41

Median N of aphasia participants (range) 46 (10–274) 33.5 (12–88)

% studies w/ language of participants = English 88 91

% studies reporting transcription time 0 5

% studies deriving features from . . .

Single picture description (e.g., Picnic Scene) 38 68

Picture sequence/story retell (e.g., Cinderella) 71 23

Spontaneous free narrative 8 0

Other [examples] 21 [procedural discourse, structured
interview]

14 [structured/topic-directed interview]

% studies using > 1 connected speech task 17 18

Note. PSA = poststroke aphasia; PPA = primary progressive aphasia.
aNote that the study (Ingram et al., 2020) that included participants with both poststroke and progressive aphasia is double-counted here in
both PSA and PPA summary columns.
process. All these studies also featured automated speech/
language analysis methods that were either text-based
(e.g., natural language processing pipelines) or acoustic
(e.g., automatic speech activity detection), though rarely
both. These highly automated approaches were more com-
mon within the progressive as compared to poststroke lit-
erature. This offers a partial explanation for the finding
that progressive studies reported a greater mean number
Figure 2. Summary of transcription and analysis methods used for deriv
and progressive (green) studies. Note that a single study could use more
of automation (blue arrow). Manual t + a = fully manual transcription an
subsequent analyses automated; nonexpert t + a = manual (nonexpert) o
a = fully automated transcription and analyses; auto a only = automa
methods that do not fit onto the proposed continuum of automation.

Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/202
of speech/language features per study, since automated
methods tend to yield large feature sets and do not impose
the same analysis costs (i.e., expert training and availabil-
ity, time) as more manual methods. Interestingly, the
question of analysis cost remains an open question in this
body of literature, as only a single study reported the tran-
scription or analysis time associated with their derivation
approach.
ation of individual speech/language features, for poststroke (blue)
than one method type. The x-axis is arranged according to degree
d analyses; expert t + a = expert transcription (e.g., CHAT, SALT),
rthographic transcription, subsequent analyses automated; auto t +
ted analysis not requiring transcription; other = other or unclear

Cordella et al.: Fluency in Aphasia Scoping Review 19
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Figure 3. Post hoc categorization of automated approaches used across included studies for transcription and/or derivation of individual
quantitative features. CLAN = Computerized Language ANalysis; SALT = Systematic Analysis of Language Transcripts; FLAT = Frequency in
Language Analysis Tool; NNLA = Northwestern Narrative Language Analysis; Themis = in-house Python program for automated transcrip-
tion, which can then be paired with NLP approaches (hence lighter pink shading); NLTK = Natural Language Toolkit; Stanford POS = Stanford
Log-Linear Part-of-Speech Tagger; L2SCA = L2 Syntactical Complexity Analyzer; SADs = speech activity detectors.
Method(s) Used for Statistical Analysis of
Quantitative Data

For all included studies (n = 45), we charted the
general category of statistical approach that was used to
�

Figure 4. Summary of data analysis methods used for poststroke (blue) and p
one analysis type. Group diff &or corr = groups comparison (t test, analysis
logistic/linear regression; PCA/Factor = principal components analysis or facto
forests, simple univariate classification) and/or classification; other = method (e

20 American Journal of Speech-Language Pathology 1–38
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differentiate or characterize (non)fluency using quantita-
tive speech/language features. These results are summa-
rized in Figure 4. A marked majority of both poststroke
and progressive studies employed a groups difference
rogressive (green) studies. Note that a single study could use more than
of variance with post hoc) and/or correlation analyses; regression =

r analysis; ML = machine learning (e.g., support vector machine, random
.g., path modeling) not belonging to any of the prespecified categories.
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approach wherein one or more nonfluent groups was com-
pared to one or more fluent groups on at least one quanti-
tative feature. Several studies undertook a related
approach and correlated a continuous clinician-rated mea-
sure of fluency (e.g., WAB-R Fluency subscore) with one
or more quantitative features.

Classification and ML analysis methods were less
common in the aggregate, though notably among progres-
sive studies, just over half of all studies (12/22) reported
these types of predictive results in addition to or instead
of null-hypothesis test statistics. This was compared to a
smaller minority of poststroke studies (2/25) that did the
same. By contrast, dimensionality reduction approaches,
and PCA in particular, was more common in poststroke
versus progressive literature.

A final noteworthy trend is that the use of ML and
dimensionality reduction approaches has increased mark-
edly in the previous 5 years. Looking across both etiolo-
gies, only three studies published prior to 2017 employed
such an approach, compared to 20 studies published since
2017. This result indicates an increasing trend with time
toward more sophisticated statistical approaches.
Individual Speech/Language Features
For a majority subset of included articles (n = 33;

denoted with an asterisk in Tables 5 and 6), we charted
an additional three data items (i.e., individual quantitative
speech/language features reported; category of individual
speech/language feature; and level of significance of
reported result). This subset was defined as all studies that
reported either between-groups significance (specifically
nonfluent vs. fluent aphasia subgroups) or correlation
results (continuous fluency scale as dependent variable)
for one or more individual quantitative speech/language
features. This requirement was imposed because we were
interested in extracting a significance value per individual
speech feature reported that would reflect on the utility of
a given measure to differentiate nonfluent and fluency
aphasia subgroups or to correlate with an established cli-
nician measure of fluency. Twelve studies did not meet
this requirement because they either reported between-
groups difference for a nonfluent versus healthy control
group only (n = 2) or employed an ML or PCA approach
only (n = 10). For these 12 studies, we did record main
results per study; however, due to the substantial differ-
ences in methodological approach, these results could not
be meaningfully summarized in the aggregate and are
therefore not included as part of the results to follow.

Methodological details of article subset. For the same
subset of articles described above, we also charted specific
methodological details to inform readers’ judgments of
individual study quality. These results are detailed in
Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/202
Table 8. Results show that of the 33-article subset, the
mean total N of aphasia participants was 53 (range: 10–
274), and a majority of articles (n = 19) reported data
from a cohort of at least 30 participants with aphasia.
Most articles in the subset (n = 29) reported data from the
author group themselves rather than reliance on a shared
public database (e.g., AphasiaBank). Importantly, the
majority (73%) of the 33-article subset included overlap in
first or last authors with at least one other article in the
subset. Several of these overlap articles (n = 6) can be
explicitly determined to not share data (e.g., focus is on
different populations), but this same determination cannot
be made for the remaining 18 articles. This relatively high
degree of author overlap increases the likelihood that at
least some of the primary data across these overlapping
articles is the same, thereby introducing a potential bias in
results. As in the broader set of all included articles, pic-
ture description and story retell tasks were the most com-
monly used elicitation tasks, and nearly all articles in the
subset (29/33) involved some degree of primary transcrip-
tion in order to derive individual speech/language features.
Of these studies, 14 (48%) reported involvement of two or
more transcribers/raters, five (17%) reported involvement
of one transcriber/rater only, and the remaining 10 (34%)
did not report details on the number of transcribers/raters
involved. Of the 14 studies reported to involve two or
more raters, 10 also reported explicitly on reliability
between raters.

Characteristics of speech/language features. Across
the 33 articles included in this subanalysis, we extracted
and charted a total of 421 individual quantitative speech/
language features that were used across studies. After a
manual process to equate identical or near-identical fea-
tures across studies, as described in Method section,
results revealed a total of 209 distinct speech/language fea-
tures across all studies. All features are listed in Supple-
mental Material S6 for both etiologies, tab: “All Features
(PSA + PPA),” and separately by etiology, tabs: “All Fea-
tures (PSA only),” “All Features (PPA only).” The mean
number of speech/language features investigated per study
(both etiologies combined) was 28.22 (Mdn = 18; range:
1–58). PPA studies tended to report a greater number of
speech/language features: the mean for this group of stud-
ies was 34.69 (Mdn = 44; range: 1–58) compared to an M
of 9.9 (Mdn = 11; range: 1–16) for PSA studies.

Focusing further on the distinct speech/language fea-
tures (n = 209), we investigated the degree of overlap of
individual features across etiologies (i.e., poststroke vs.
progressive). As can be seen in Figure 5 (Panel A), there
is minimal overlap in exact features investigated across
poststroke and progressive etiologies. In fact, there is just
14% absolute agreement between poststroke and progres-
sive studies across all feature types. Figure 5 (Panel B)
Cordella et al.: Fluency in Aphasia Scoping Review 21
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(table continues)

�

Table 8. Methodological details for 33-article subset.

Study

Study N
(aphasia
only) Data source Author overlap*?

What task was used to derive
quantitative measures?

How were quantitative
features derived?

How many
transcribers/
raters were
involved?

If multiple
transcribers/
raters, was
reliability
reported?

Alyahya et al., 2020 46 Author data Yes (Alyahya et al.,
2021)

Single picture description (e.g.,
Cookie Theft, Picnic Scene);
Picture sequence/story retell
(e.g., Cinderella); Other:
procedural discourse task (“how
to prepare cup of tea”)

Fully manual transcription
& analyses

1 N/A

Alyahya et al., 2021 46 Author data Yes (Alyahya et al.,
2020)

Single picture description; Picture
sequence/story retell; Other:
procedural discourse (how to
make tea)

Fully manual transcription
& analyses

1 N/A

Ash et al., 2013 62 Author data Yes (Cho et al., 2021;
Nevler et al., 2019b)

Single picture description; Picture
sequence/story retell

Fully manual transcription
& analyses; Other: Praat
also used, presumably
to extract durations

2 or more Not reported

Cho et al., 2021 64 Author data Yes (Ash et al., 2013;
Nevler et al., 2019b)

Single picture description Expert transcription (e.g.,
CHAT, SALT formats),
subsequent analyses
automated

1 N/A

Clough & Gordon,
2020

254 AphasiaBank Yes (Gordon & Clough,
2020, 2022)

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

Transcription done
not as part of
study (e.g.,
AphasiaBank)

N/A

Cordella et al., 2017 38 Author data Yes (Cordella et al.,
2019)

Single picture description Manual (nonexpert)
orthographic
transcription,
subsequent analyses
automated

Not reported Not reported

Cordella et al., 2019 43 Author data Yes (Cordella et al.,
2017)

Single picture description Manual (nonexpert)
orthographic
transcription,
subsequent analyses
automated

1 N/A

Faroqi-Shah et al.,
2020

26 DementiaBank Yes (Themistocleous,
Webster, et al.,
2021), but
different data
source

Single picture description Expert transcription,
subsequent analyses
automated

Transcription done
not as part of
study (e.g.,
AphasiaBank);
2 or more

Yes
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Table 8. (Continued).

Study

Study N
(aphasia
only) Data source Author overlap*?

What task was used to derive
quantitative measures?

How were qua itative
features de ed?

How many
transcribers/
raters were
involved?

If multiple
transcribers/
raters, was
reliability
reported?

(table continues)

Feenaughty et al.,
2021

31 Author data Single picture description Manual (nonexpe
orthographic
transcription,
subsequent an lyses
automated; O r:
semi-automat but
requiring man l
decisions/proc sing in
Praat

Not reported Yes

Fraser et al., 2014 24 Author data Yes (Marcotte et al.,
2017)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated

Not reported Not reported

Ghoreishi et al.,
2020

27 Author data No Picture sequence/story retell Fully manual tran ription
& analyses

Not reported Not reported

Gordon & Clough,
2020

254 AphasiaBank Yes (Clough &
Gordon, 2020;
Gordon & Clough,
2022)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated

Transcription done
not as part of
study (e.g.,
AphasiaBank)

N/A

Gordon & Clough,
2022

185 AphasiaBank Yes (Clough &
Gordon, 2020;
Gordon & Clough,
2020)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated

Transcription done
not as part of
study (e.g.,
AphasiaBank)

N/A

Haley et al., 2021 25 Author data Yes (Harmon et al.,
2019), but different
populations (PSA
vs. PPA)

Single picture description; Picture
sequence/story retell

Fully manual tran ription
& analyses; O r: Praat
also used, but llowing
detailed manu (narrow
phonetic) cod

2 or more Yes

Hardy et al., 2016 32 Author data No Other: spontaneous propositional
speech following structured
interview (last holiday)

Other: not enoug detail
provided

Not reported Not reported

Harmon et al., 2019 14 Author data Yes (Haley et al.,
2021), but
different
populations (PSA
vs. PPA)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated; Fu
manual transc tion &
analyses; Oth Praat

2 or more Yes

Kim et al., 2019 11 Author data Yes (Kim et al.,
2021)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated

2 or more Yes

Kim et al., 2021 11 Author data Yes (Kim et al.,
2019)

Picture sequence/story retell Expert transcript ,
subsequent an lyses
automated

2 or more Yes

Kong et al., 2016 24 Author data No Picture sequence/story retell Fully manual tran ription
& analyses

2 or more Yes

C
ord

ella
et

al.:
Fluency

in
A
p
hasia

S
cop

ing
R
eview

23

Downloaded from: https://pubs.asha.org Nan Bernstein Ratner on 04/26/2024, Terms of Use: https://pubs.asha.org/pub ights_and_permissions 
nt
riv

rt)

a
the
ed
ua
es

ion
a

sc

ion
a

ion
a

sc
the
fo
al
ing

h

ion
a
lly
rip
er:

ion
a

ion
a

sc

s/r



Table 8. (Continued).

Study

Study N
(aphasia
only) Data source Author overlap*?

What task was used to derive
quantitative measures?

How were quantitative
features derived?

How many
transcribers/
raters were
involved?

If multiple
transcribers/
raters, was
reliability
reported?

(table continues)

�

Mack et al., 2015 35 Author data Yes (Thompson
et al., 2012)

Picture sequence/story retell Expert transcription,
subsequent analyses
automated; Other: also
manual coding of
pauses

2 or more Not reported

Manning & Franklin,
2016

22 Author data Picture sequence/story retell Expert transcription,
subsequent analyses
automated

2 or more Yes

Marcotte et al., 2017 25 Author data Yes (Fraser et al.,
2014)

Other: topic-directed interviews
(what do participants do each
day)

Expert transcription,
subsequent analyses
automated

Not reported Not reported

Martinez-Ferreiro
et al., 2017

10 Author data No Other: semistandardized open-
ended interview questions (last
job, holidays, hobbies)

Fully manual transcription
& analyses

2 or more Not reported

Matias-Guiu et al.,
2022

76 Author data No Single picture description Expert transcription,
subsequent analyses
automated; fully manual
transcription & analyses

1 N/A

Mirman et al., 2019 46 Author data No Picture sequence/story retell Fully manual transcription
& analyses

2 or more Yes

Nevler et al., 2019b 59 Author data Yes (Ash et al.,
2013; Cho et al.,
2021)

Single picture description Automated analysis not
requiring transcription;
fully manual
transcription & analyses

Not reported Not reported

Sajjadi et al., 2012 12 Author data No Single picture description; Other:
semistructured interviews

Fully manual transcription
& analyses

Not reported Not reported

Sitek et al., 2015 30 Author data No Single picture description Fully manual transcription
& analyses

2 or more Not reported

Themistocleous,
Webster, et al.,
2021

52 Author data Yes (Faroqi-Shah et al.,
2020), but different
data source

Single picture description Fully automated
transcription & analyses

2 or more Yes

Thompson et al.,
2012

37 Author data Yes (Mack et al.,
2015)

Picture sequence/story retell Expert transcription,
subsequent analyses
automated

2 or more Yes

Zhang et al., 2021 16 AphasiaBank No Spontaneous free narrative; Single
picture description; Picture
sequence/story retell

Fully manual transcription
& analyses

2 or more Yes

Zimmerer et al.,
2018

20 Author data Yes (Zimmerer et al.,
2020), but different
populations (PSA
vs. PPA)

Other: semistructured interview Expert transcription,
subsequent analyses
automated

Not reported Not reported
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Table 8. (Continued).

Study

Study N
(aphasia
only) Data source Author overlap*?

What task was used to derive
quantitative measures?

How were quantitative
features derived?

How many
transcribers/
raters were
involved?

If multiple
transcribers/
raters, was
reliability
reported?

Zimmerer et al.,
2020

88 Author data Yes (Zimmerer et al.,
2018), but different
populations (PSA
vs. PPA)

Spontaneous free narrative; Other:
guided personal interview
questions

Expert transcription,
subsequent analyses
automated

Not reported Not reported

Note. N/A = not applicable; CHAT = Codes for the Human Analysis of Transcripts; SALT = Systematic Analysis of Language Transcripts; PSA = poststroke aphasia; PPA = primary
progressive aphasia.

*Author overlap is defined by a sharing of either the first or one of the last two (senior) authors among any other articles in the 33-article subset.
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Figure 5. Featural overlap and agreement within and across etiologies for all studies (n = 33) included in individual feature subanalysis. (A)
Venn diagram showing the number of unique speech/language features in the intersection and complements of poststroke and progressive
feature sets. (B) Type–token ratio (TTR; calculated as [# distinct individual features / # total individual features] × 100) within each etiology,
for all features.
also reports the degree of within-etiology variation in the
use of specific speech/language features, as measured by a
type–token ratio (TTR; i.e., # distinct features; # total
features). For example, in a simplified scenario where
across all PSA studies, three distinct features were used,
with each reported twice (i.e., across two different studies),
the TTR would be 3:6, or 50%. A higher TTR is indica-
tive of greater variation in the use of individual features
or in other words, a lack of convergence across studies on
a core set of features to be investigated. Overall, the all-
feature TTR was higher for PSA (68%) compared to PPA
studies (53%).

Reported significance of speech/language features.
For every individual speech/language feature (n = 421)
reported across all studies in this subanalysis, we charted
not only the feature itself but also the reported signifi-
cance. We simplified and discretized reported significance
according to a prespecified scale, as described in the
Method section (see Table 2), allowing us to summarize
these results across all studies in terms of (a) whether or
not authors found a significant difference between fluent
and nonfluent aphasia subgroups on any particular mea-
sure and (b) if significant, what the direction of signifi-
cance was (i.e., nonfluent < fluent; nonfluent > fluent).
Using values from this simplified scale, we calculated the
mean value (possible range: −1 to 1) of each individual
feature. For this and all subsequent analysis, we analyzed
PSA and PPA studies separately for ease of interpretation.
Figure 6 shows the side-by-side results of this analysis.
Supplemental Material S5 gives corresponding numerical
values for these results. For the sake of simplicity, the
number of quantitative features listed on the y-axis has
been limited to only those (n = 48) that appear at least
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three times across all studies (PSA and PPA combined).
This thresholding lessens the likelihood of overinterpreting
the utility of a given feature based on reported significance
in only one or a handful of studies. From Figure 6,
important differences across the etiologies can be seen.
For example, the set of consistently investigated features
reported across poststroke studies was smaller in number
(27 vs. 46 total features) but included a greater percentage
of features with high mean reported significance (i.e.,
mean absolute value ≥ 0.5). That is, 59% of features in
PSA studies met this criterion, compared to just 24% of
features in PPA studies. Another important takeaway
from Figure 6 is the direction of the significant effect, with
darker red indicating a strong and consistent (across stud-
ies) significant effect in the direction of nonfluent < fluent
performance and darker gray indicating the reverse.

As part of the individual feature analysis, we were
also interested in contrasting within etiology the most used
versus the most useful (i.e., most significant, as determined
by mean magnitude of significance) features. To this end,
Figure 7 displays a scatter plot of features on each of
these two dimensions, for PSA (Panel A) and PPA (Panel
B) studies. Again, for ease of interpretation the x-axis is
thresholded to display only features with use ≥ 10%, and
individual features are labeled only if their mean signifi-
cance value ≥ 0.5. Among PSA studies, three features
(speech rate, mean length of utterance [MLU], and # total
words) were both (relatively) commonly used and had
high mean significance. Among PPA studies, two such
features (speech rate, # total words) emerged. Also inter-
esting to note are the features in both etiologies with rela-
tively lower usage rates but high mean significance, as
these might be considered potentially promising measures
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Figure 6. Mean reported significance level per quantitative feature for all studies (n = 33) included in individual feature subanalysis. Note that
figure displays only features occurring at least three times across all studies. “% studies” refers to percentage of studies (within each etiol-
ogy) reporting significance for a given feature. “Mean Value” refers to average significance value across all studies reporting a given feature.
Negative values represent features for which nonfluent < fluent performance (on average), and positive values indicate the reverse relation-
ship. F0 = fundamental frequency; AoA = age of acquisition; TTR = type–token ratio; MATTR = moving average type–token ratio; MLU =
mean length of utterance. Color of text on y-axis reflects feature construct: yellow = quantity; green = rate/prosody; red = repairs; orange =
speech errors; purple = lexical retrieval ability; green = morphological competence; pink = grammatical competence.
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Figure 7. Most used versus most useful features. Scatter plots showing use as measured by the % (within etiology) of studies reporting a
given feature by the mean absolute value of the significance of that feature, for (A) PSA and (B) PPA studies. Individual features are labeled
only if mean significance value is ≥ .5. x-axis is thresholded to display only features with use ≥ 10%. PSA = poststroke aphasia; PPA = pri-
mary progressive aphasia; MATTR = moving average type–token ratio; MLU = mean length of utterance.
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for future investigation. In PSA, such features include %
pause, # unique words, and % words in sentences. In PPA,
such features included articulation rate and mean familiarity
(nouns). Taken together, results from analysis of individual
features highlight the fact that while a large variety of differ-
ent individual features have been reported across studies,
there is considerably more agreement on the most salient fea-
tures: speech rate and total number of words across both eti-
ologies, along with MLU in PSA studies.
Discussion

Summary of Main Findings

Trends Toward Automated Analysis
As evidenced by the main findings of this review,

connected speech analysis is an approach that demon-
strates a strong potential for capturing the important
dimensions of (non)fluency in aphasia, regardless of etiol-
ogy. It appears feasible to collect on a large scale, and it
is unquestionably possible to extract large amounts of
meaningful speech/language features from the resultant
samples. Moreover, it is possible—and increasingly
common—to automate at least some aspects of the anal-
ysis process. In contrast to fully manual methods that
were the norm in the early aphasiology literature (Prins &
Bastiaanse, 2004; Saffran et al., 1989; Vermeulen et al.,
1989; Wagenaar et al., 1975), a majority of all studies in
this review used some type of automation to facilitate
analysis of connected speech samples. Importantly though,
the automation tended to be at the stage of feature extrac-
tion and often required as input a detailed manual tran-
scription done by trained experts. A handful of reviewed
studies automated or simplified transcription, for instance
by generating a nonexpert orthographic transcription and
pairing this with a natural language processing analysis
approach (Fraser et al., 2013; Themistocleous, Ficek,
et al., 2021; Themistocleous, Webster, et al., 2021). Still
other studies employed a text-free or text-minimal acoustic
approach, although this approach does limit the breadth
of feature types that can be investigated (Cordella et al.,
2019; Nevler et al., 2019b, 2020).

Emergence of Advanced Statistical Approaches
Review results demonstrated that although most

reviewed studies continue to focus primarily on between-
groups differences (i.e., fluent vs. nonfluent) and inferen-
tial statistics, an increasing number of studies (n = 20)
published since 2017 have employed ML or other
advanced statistical approaches. This is compared to only
three such studies employing these types of analysis
approaches in the period from 2012–2016. This trend
observed in the current review mirrors broader trends
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reported in the general aphasia literature on the increasing
use of ML in recent years (Adikari et al., 2023). A poten-
tial advantage of ML approaches is the ability to capture
nonlinear relationships between large numbers of input
features and a desired output and use this information to
inform future clinical decision making. Particularly when
these models are cross-validated with different sets of
training and test data, they may enhance the generalizabil-
ity of results and make it more likely that features identi-
fied as important for determining nonfluency in one study
could be applied to more varied contexts.

If we take as our goal—as has been well-articulated
by others (see, for example, Gordon & Clough, 2022)—to
be able to reliably quantify and characterize an individ-
ual’s fluency status as part of the fuller characterization of
their clinical profile, then we need to understand the
dimensions and features that are most meaningful to clini-
cal characterizations. ML and data reduction techniques are
promising approaches for the identification of a smaller set of
core speech/language features that might be most important
or meaningful for characterizing nonfluency in aphasia.
Reducing feature redundancy is a critically important
endeavor, especially given the time intensiveness of current
analysis methods (Armstrong et al., 2007; Bryant et al., 2016).

Variation Across Studies in Specific Measures
Used to Index Nonfluency

Review results revealed a large number of distinct
individual speech/language features used across and within
PSA and PPA etiologies, leading to low levels of absolute
cross-etiological agreement (i.e., < 15% of the same indi-
vidual features used across PSA and PPA studies) and rel-
atively high variation within-etiology. Review results
showed that for all features (i.e., combined across all cate-
gories), the TTR was 68% for PSA studies and 53% for
PPA studies. This means that, particularly in the PSA lit-
erature, there is a tendency to use a wide variety of differ-
ent individual features, which naturally leads to low levels
of convergence on these features across studies. Impor-
tantly though, the vast majority of these individual fea-
tures can be coherently categorized into a smaller number
of underlying constructs, which are concordant with the
pillars of nonfluency, namely lexical retrieval, motor
speech, and agrammatism in PSA and motor speech and
agrammatism in PPA.

Primacy of Quantity, Rate, and Syntactic Features
for Identifying Nonfluency

Among the large number of candidate features
reported in the literature, review results demonstrated that
the most useful features for differentiating fluent from
nonfluent aphasia in both the PSA and PPA literature—
based on the mean magnitude of significance—were
Cordella et al.: Fluency in Aphasia Scoping Review 29
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features related to overall quantity of speech, rate of
speech, or syntactic complexity and/or accuracy. Lexical
variables related to lexical content, diversity, and accuracy
were also well-represented among highly significant features
but the direction of these effects (i.e., whether the given fea-
ture was higher or lower in nonfluent compared to fluent
aphasia) was discrepant across etiologies and may highlight
an important difference in the presentation of nonfluency in
PSA versus PPA, a point we discuss in further detail below.

Within the PSA literature summarized as part of this
review, quantity (# total words) or lexical content features
confounded with quantity (# unique words, # open class,
# verbs), rate (speech rate, % pause), and syntactic fea-
tures (% words in sentences, MLU) were among the most
useful for identifying nonfluency in this population (as evi-
denced by relatively high mean significance value in Fig-
ure 7A), Specifically, results demonstrated that across
studies, nonfluency was robustly associated with reduced
total quantity of speech, slowed rate of speech at least
partially attributable to increased pausing, and reduced
grammatical complexity of connected speech. Importantly,
the finding for primacy of speech quantity in particular in
determining connected speech fluency in PSA converges
with very recent evidence from an unsupervised, data-
driven analysis using connected speech to identify natu-
rally occurring clusters in a large, heterogeneous PSA
cohort (Fromm et al., 2022). In this analysis, total number
of words and total number of closed class words were the
only features needed to identify clinically meaningful clus-
ters. With regard to lexical variables, review results
revealed lexical diversity—as measured by the moving
average type–token ratio—to be among the most robust
differentiators between fluency subgroups, with studies
consistently reporting significantly reduced lexical diversity
for nonfluent compared to fluent PSA subgroups. Some-
what less consistently, studies also reported a greater per-
centage of neologistic errors, reduced propositional density
but contrastingly, a lower percentage of circumlocutory
utterances for nonfluent (cf. fluent) subgroups (see Figure
7A). Taken together, review results support existing concep-
tualizations of nonfluency in PSA as multiply determined
by motor speech, grammatical, and lexical retrieval deficits.

Within the PPA literature summarized as part of
this review, quantity (# total words) or lexical content fea-
tures confounded with quantity (# unique words), rate
(articulation rate, speech rate, % pause), and syntactic fea-
tures (% complex grammar, dependent clauses per T-unit)
were among the most useful for identifying nonfluency in
this population (see Figure 7B). Similar to PSA, results
demonstrated that across PPA studies, nonfluency was
strongly associated with reduced total quantity of speech,
slowed rate of speech attributable to increased pausing
and reduced articulation rate, as well as reduced
�30 American Journal of Speech-Language Pathology 1–38
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grammatical complexity of connected speech. The top two
most robustly significant variables across PPA studies were
speech rate and articulation rate, the latter of which is a
subcomponent rate measure that excludes pause and has
been attributed to motor speech function in PPA (Cordella
et al., 2017). This finding for the salience of rate measures
in PPA is strikingly consistent with recent results from a
predictive, ML analysis in which multiple algorithms
ranked a speech rate measure as the single most important
feature for subtype classification (Matias-Guiu et al., 2022).
Somewhat in contrast to PSA findings, lexical variables
demonstrated no reliably significant differences in lexical
diversity between fluent and nonfluent groups; moreover,
the nonfluent variant tended to use less frequent and less
familiar individual words compared to more fluent PPA
subtypes. These findings highlight a unique aspect of flu-
ency and its conceptualization in PPA as compared to
PSA—namely that lexical deficits have never been consid-
ered to be a defining feature of the nonfluent variant of
PPA (Gorno-Tempini et al., 2011; Grossman, 2012; Ogar
et al., 2007). Taken together, review results for PPA studies
are consistent with existing conceptualizations of nonflu-
ency in PPA as principally determined by underlying motor
speech impairment and agrammatism, the two core criteria
for diagnosis of nfvPPA (Gorno-Tempini et al., 2011). That
is, the syntactic features that proved useful in identifying
nfvPPA across reviewed studies can be interpreted to sup-
port a degree of agrammatism in this group compared to
more fluent subtypes. Somewhat more obliquely, both rate
and quantity measures can be mapped to motor speech
function, including in PPA (Ingram et al., 2020; Poole
et al., 2017). For example, reduced speech rate is one of
the most commonly cited diagnostic features of acquired
apraxia of speech according to a recent review (Allison
et al., 2020). Moreover, subcomponents of speech rate such
as articulation rate or maximum phonation rate—which
reflect only the rate of spoken syllables or words, disregard-
ing pause time—have been associated specifically with clini-
cal presentations of motor speech dysfunction and/or
speech motor-involved brain regions in PPA and related
disorders (Cordella et al., 2019, 2022; Duffy et al., 2017;
García et al., 2022; Josephs et al., 2023).

The Fluency Construct in Poststroke and
Progressive Etiologies

A major goal of this review was to enable meaningful
comparison of fluency and the ways in which it is measured
across the two major acquired aphasia etiologies. In both
PSA and PPA, fluency is a key construct with important
diagnostic and therapeutic implications. There is debate,
however, as to whether fluency is a comparable construct
across these two etiologies and therefore whether it can or
should be quantified in similar ways (Ingram et al., 2020).
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One the one hand, there is indirect evidence that the
constructs subserving speech fluency are similar across
PSA and PPA etiologies albeit with a few important dis-
tinctions. As previously mentioned, the PSA literature
conceptualizes fluency as multiply determined by three
main constructs: syntax, motor speech, and lexical
retrieval (Goodglass & Kaplan, 1972; Gordon, 1998,
2020). The progressive literature conceptualizes fluency as
largely dependent on a combination of syntax and motor
speech (Gorno-Tempini et al., 2011; Mesulam, 2001;
Mesulam et al., 2012). Review results showed specifically
that features related to quantity, rate, and syntax are both
commonly used and show robust overall significance in
differentiating fluent from nonfluent subgroups in both
PSA and PPA. Lexical features are useful for differentiat-
ing fluency subgroups in PSA, with nonfluency associated
with impoverished lexical access. By contrast, nonfluency
in PPA is not associated with impoverished lexical con-
tent, at least on lexical metrics that are not confounded
with overall quantity.

On the other hand—despite some shared underlying
constructs to fluency—there is limited but compelling evi-
dence of etiological differences in the manifestation of flu-
ency when assessed on the same scale. In one of very few
studies to include both PSA and PPA etiologies in a single
data-driven analysis, Ingram and colleagues found that
unlike other linguistic dimensions (e.g., semantics, phonol-
ogy), speech fluency revealed a strong etiological separa-
tion whereby even so-called fluent PSA subtypes were less
fluent than virtually all PPA subtypes (Ingram et al.,
2020). The current review adds to this line of inquiry not
by directly comparing performance on any one quantita-
tive feature, but by surveying the individual features used
and the strength of evidence per feature within each etiol-
ogy. Overall, results suggest a tendency to use nonidenti-
cal individual features across etiologies. However, results
also demonstrated important similarities across etiologies.
That is, when considering the features within each etiology
that showed the greatest mean significance, there was con-
siderable overlap across PSA and PPA studies, suggesting
a degree of featural overlap among higher saliency fea-
tures. It may thus be possible to measure fluency across
etiologies with similar features or feature sets, even if we
acknowledge that performance on those measures will
likely differ markedly, for example, in comparing nonflu-
ent PSA subtypes to nfvPPA.

It should be noted that in both etiologies, there is a
push away from binary or rigid categorical conceptualiza-
tions of fluency, with many compelling arguments that
these categories are unreliable to diagnose, often overlap-
ping, and/or hold minimal predictive value for recovery or
decline (Casilio et al., 2019; Ingram et al., 2020; Wilson
et al., 2022). Instead, many of these arguments advocate
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for thinking about fluency as a graded, continuous dimen-
sion as part of a multidimensional profiling of speech and
language deficits. In these conceptualizations, fluency
remains an important construct to assess and treat; in fact,
several data-driven studies have returned fluency as a pri-
mary dimension explaining overall variance in connected
speech output in large aphasia cohorts (Alyahya et al.,
2020; Fromm et al., 2022; Halai et al., 2017a; Matias-
Guiu et al., 2022). These newer conceptualizations do,
however, necessitate a change in how fluency is measured.
Specifically, they require a shift away from coarse subjec-
tive categories and toward more reliable, finer grained mea-
surement of fluency. Quantification of fluency from con-
nected speech samples is one such approach that is promis-
ing in this regard. Results from this review have provided a
snapshot of current approaches to the quantification of
connected speech fluency in aphasia. Below, we discuss the
implications of these findings as applied to the clinical set-
ting and explore potential ways forward in pursuit of reli-
able, feasible, and interpretable quantification approaches.
Clinical Implications, Barriers, and
Future Directions

As evidenced by the results of this review, quantita-
tive assessment of connected speech shows promise for
fine-grained characterization of fluency in aphasia. Yet,
despite its widespread use among researchers, subjective
categorical or semicategorical ratings of fluency remain
the clinical gold standard. Data from this scoping review
can shed light on some of the potential barriers to clinical
uptake of current quantification approaches, as well as
highlight promising trends and approaches for future use.

Barriers to Clinical Uptake
Current approaches to quantification of speech flu-

ency in aphasia are limited by two critical realities as
revealed in this review: (a) features proposed to date over-
whelmingly rely on time-consuming manual derivation
methods; and (b) there is little consensus on which, how
many, or what type of quantitative features ought to be
used as proxies for fluency. An additional caution of the
literature centers on potential methodological shortcom-
ings and/or biases of current approaches.

Regarding barrier (a), results of this review demon-
strated a continued reliance on at least partially manual
feature extraction methods, particularly for the transcrip-
tion stage of analysis. As has been articulated in other
reviews of the broader discourse literature (Bryant et al.,
2016, 2017; Stark et al., 2021), manual transcription is a
significant barrier to implementation within clinical settings,
where time is often the limiting factor. Similarly, a recent
survey of current clinical practice for assessing speech
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fluency in aphasia found that a majority of SLPs recog-
nized a need for more objective, fine-grained assessment
methods but were reluctant or unable to use time-intensive
measures in everyday clinical practice (Gordon & Clough,
2022). In the current review, we considered a narrow aspect
of time intensiveness, namely whether or not authors
reported transcription time. Our findings indicated that vir-
tually no studies reported the approximate per sample time
required for transcription. This means it is not possible to
fully evaluate transcription and analysis methods in terms
of their time cost and suggests a significant gap in the com-
munication of important information to a clinical audience.

Regarding barrier (b), review results revealed 210
distinct candidate features that might possibly be useful
for differentiating nonfluent and fluent aphasia subtypes.
Even within etiology, there was a tendency across studies
to investigate related but nonidentical features as proxies
for the same core construct. Though this exploration of
large numbers of potential features is useful from a
research perspective, it must also be accompanied with
approaches that critically evaluate the utility of proposed
features. A clinician wishing to undertake a quantitative
analysis needs to know the core set of nonredundant fea-
tures that capture the most important aspects of speech
fluency, and that information is currently lacking in the
literature to date. Identification of a smaller subset of cru-
cial features—combined with a detailed explanation of
what each of these features represent and how best to
measure them—would make for a more coherent message
that could more easily be adopted into the clinical context.
Current review results may be a helpful starting point
toward this end by identifying features that are most used
as well as those that are most useful in differentiating flu-
ency subgroups across a sizable number of studies in both
the PSA and PPA literature. Going forward, the best
approach to identifying an optimal feature set for clinical
adoption may be advanced statistical and ML approaches.
We discuss more on this point in the following section.

A final limitation of the current literature relates to
methodological details of the studies used to extract indi-
vidual speech/language features identified and analyzed in
this review. Although, in keeping with the standards of
scoping review, we did not include a formal assessment of
methodological quality of included articles, we nonetheless
summarized key methodological details of all articles from
which individual speech/language features were extracted.
Results on this point revealed a substantial risk in redun-
dant primary data across included subset articles, stem-
ming largely from the fact that the same or similar author
groups published multiple studies reporting on potentially
some of the same participants. Several other studies in the
article subset make use of a shared public database (either
AphasiaBank or DementiaBank), which also means results
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are based on the same or similar set of individual partici-
pants. Although important to consider in interpreting indi-
vidual study results, we do not view these as inherent
weaknesses and some degree of data overlap is unavoid-
able, particularly when dealing with rare disorders. In
addition, shared databases such as AphasiaBank have the
advantage of data being drawn from a diverse set of
nationwide centers, with resulting data transcription sub-
ject to a highly controlled, rigorous, and transparent pro-
cess (MacWhinney et al., 2011). The other key methodo-
logical point revealed by our charting process is the incon-
sistent approach to manual transcription and analysis.
Crucially, studies did not reliably report involvement of
two or more transcribers/raters and formal reliability
between raters was reported even more rarely. Future
research aiming to extract individual speech/language
measures from connected speech would likely be strength-
ened by inclusion of multiple raters and reliability analy-
ses, as these safeguards would increase confidence in the
measures themselves. This type of enhanced methodologi-
cal reporting could also serve to identify measures that,
while promising in their ability to differentiate fluency
subgroups, might also be unreliable to extract and there-
fore not suitable for use in the clinical context.
A Multipronged Path Forward
Understanding the limitations of the literature, there

are nonetheless promising advances underway that are
likely to improve current approaches to assessing speech
fluency in aphasia. Regarding quantification of connected
speech, recent research has introduced increasingly effi-
cient preprocessing approaches, including the use of natu-
ral language processing or acoustic-based analysis tech-
niques that could lessen or eliminate the need for detailed
expert transcriptions (Cho et al., 2021; Fraser et al., 2013;
Liu et al., 2023; Nevler et al., 2019a; Themistocleous,
Ficek, et al., 2021; Themistocleous, Webster, et al., 2021).
There are also major advances being made to automate
transcription for individuals with aphasia or other speech
and language disorders (Gosztolya et al., 2019; Jacks et al.,
2019; Themistocleous, Ficek, et al., 2021; Themistocleous,
Webster, et al., 2021). These types of approaches have the
potential to enhance the utility of connected speech analy-
sis by enabling efficient processing and analysis of large
volumes of connected speech data collected in everyday,
ecologically valid settings (e.g., from audio recordings of
standard in-clinic neuropsychological examinations; at
home via smartphone app). Such approaches are already
being used to promising effect among other patient popula-
tions (Amini et al., 2022; Connaghan et al., 2019; Stegmann
et al., 2020; Tavabi et al., 2022; Xue et al., 2021).

Simultaneously, there are recent trends toward utili-
zation of advanced predictive modeling and data-driven
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approaches, including ML (Adikari et al., 2023). These
types of approaches enable researchers to develop models
that take as inputs large numbers of multidimensional fea-
tures and reveal pared down feature sets with optimal
explanatory power and/or diagnostic relevance. To date,
ML approaches in the aphasia literature have typically
involved supervised classification or regression tasks that
map various hand-crafted input variables (e.g., quantita-
tive speech/language features, demographic variables,
imaging-based measures) to clinically labeled output vari-
ables (e.g., diagnostic subgroup, treatment response; Billot
et al., 2022; Bonilha et al., 2019; Kristinsson et al., 2021).
More recently, studies have begun to combine supervised
and unsupervised approaches, in acknowledgment of the
often-imperfect clinical labels used as ground truth in
supervised-only approaches. Fromm and colleagues used
one such combined supervised/unsupervised approach to
identify connected speech predictors of naturally occurring
aphasia subtype clusters, reducing a set of 221 input features
to just two critically important ones (Fromm et al., 2022).
In this way, ML-based approaches can bring researchers
closer to convergence on a particular set of clinically useful
features. Importantly though, ML approaches must con-
tinue to be rigorously evaluated for accuracy, risk of bias in
predictions, and clinical interpretability of results (Char
et al., 2018; Grollemund et al., 2019; Yoon et al., 2022).

The final bigger picture consideration for the future
is recognizing the appropriate role for quantification
approaches in the clinic setting. At least for the foresee-
able future, quantification approaches are unlikely to sup-
plant clinician ratings. A more realistic short-term goal—
and one that is already underway (Casilio et al., 2019;
Gordon & Clough, 2022)—is the development of more
reliable and fine-grained subjective scales that incorporate
quantification where appropriate. As an example, notori-
ously subjective ratings of motor speech severity might be
augmented by quantifying prosodic (e.g., speech rate) and
phonetic (e.g., error counts) aspects of connected speech
(Jacks et al., 2019). Importantly, using quantification in
this way still necessitates an understanding of which fea-
tures are the best proxies for the different contributing
aspects of fluency. It also requires time-efficient methods
to extract these features. For these reasons, continued
advances toward efficient, reliable quantification of con-
nected speech fluency remains a critical endeavor for
aphasia researchers.

Limitations

There are several limitations of the current review.
First, we restricted our literature search to articles pub-
lished since 2012. Although we believe this delimiter to be
crucial in allowing us to compare results more meaning-
fully across PSA and PPA etiologies, it does mean the
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review offers only a snapshot of recent trends. This is
important to keep in mind, particularly regarding the PSA
literature, which has a longer history compared to the
PPA literature. One practical consequence of this may be
that the PSA literature is now less reliant on categorical
comparisons and binary classification (fluent vs. nonflu-
ent) of fluency, whereas this categorical conceptualization
is still embedded into the current PPA consensus criteria
and therefore continues to be referenced quite widely in
that literature. Because our review focused primarily on
studies that made a direct comparison in some form
between fluent and nonfluent aphasia subtypes, our results
may reflect an overrepresentation of progressive studies if
indeed these types of comparisons are currently more
common than in the PSA literature.

A second limitation of the current study is the reli-
ance on subjective judgment to equate and categorize indi-
vidual features extracted from the included studies. Many
individual features (e.g., # utterances, speech rate) could
plausibly be categorized into more than one superordinate
category, and yet, for the sake of simplicity, we imposed a
one-to-one relationship between feature and category.
Moreover, we used a stringent method for equating identi-
cal or near-identical features. This approach means that our
results may underestimate the degree of convergence—both
across and within etiologies—if evaluated more holistically.

A final limitation of this study relates to the represen-
tation of both the same participants and same authors
across multiple of the included studies. The representation
of the same participants—notably via mining of large,
shared databases (e.g., AphasiaBank)—may have implica-
tions for interpreting the significance of variables in distin-
guishing between fluent and nonfluent PWA. The represen-
tation of the same authors across multiple studies presents a
similar issue: authors may use overlapping participant data
sets across different studies and also tend to use similar
methodological approaches and/or feature sets, which may
bias the representation of certain features in our review.
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