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Abstract
Despite recent advancements in Automatic Speech Recogni-
tion (ASR), its accuracy remains low for pathological speech,
thereby limiting AI-based healthcare interventions in such set-
tings. This work addresses this challenge by fine-tuning Whis-
per, an ASR known for its ability to capture high-dimensional
features in healthy speech. Using our comprehensive dataset
of patients with stroke, we fine-tuned Whisper and significantly
reduced Word Error Rate (WER), surpassing previous work on
severe aphasia. To demonstrate its generalisability, we tested
the model on a separate database, AphasiaBank, and observed
a lower WER despite variations in dialect, linguistics, and test
protocols. Our result on the AphasiaBank was superior to pre-
vious ASRs trained on this database, confirming the generalis-
ability of our approach. These outcomes not only address ASR
limitations in impaired speech but also establish the foundations
for standardised and versatile AI solutions for remote speech
monitoring for timely diagnosis and intervention.
Index Terms: Speech Recognition, Fine-tuning, Pathological
Speech

1. Introduction
Aphasia is a communication disorder resulting from damage to
specific areas of the brain responsible for the production and
comprehension of language. In the United States, the National
Aphasia Association estimates that between 2 and 4 million
people live with aphasia [1], with another 350,000 affected in-
dividuals in the United Kingdom [2]. Although the disorder can
be acquired after any brain injury, stroke remains the primary
cause [3, 4], resulting in aphasia in 30% of stroke survivors [5],
with a significant impact on recovery [6, 7].

Aphasia manifests as difficulty with different linguistic pro-
cesses (semantics, fluency, phonology) in each individual with
significant heterogeneity in the resulting impairment. Patients
may experience word-finding difficulties, sentence comprehen-
sion or construction problems, but they may also have additional
cognitive deficits or motor speech issues, such as dysarthria or
apraxia that affect overall language abilities. As a consequence,
the heterogeneous nature and severity of aphasic symptoms not
only hinder communication but also have profound social and
emotional effects, resulting in self-isolation and exclusion that
significantly impact the quality of life of patients [8].

Given the high incidence of aphasia and its severe symp-
toms, it has extensive social and public health implications. The
best evidence for rehabilitation is based on delivering intensive

speech therapy, often requiring around 100 hours per month
soon after a stroke [9]. Therefore, the process of administer-
ing therapy, as well as diagnosing and monitoring, demands
substantial time and resources due to its inherent reliance on
personalised clinician-patient engagement. This needs for regu-
lar, extensive therapy sessions poses a significant logistical and
financial challenge for healthcare providers [10, 11, 12].

Considering these challenges, there is a pressing need to
develop accessible diagnostic and therapeutic tools that patients
can use with minimal supervision. The integration of Automatic
Speech Recognition (ASR) would enable clinicians to remotely
monitor speech patterns more efficiently during the recovery
process. By automating elements of language assessment and
therapy, the ASR would alleviate the burden on healthcare re-
sources, reducing costs while improving access to timely and
personalised care. However, progress in this domain has been
hindered by the lack of diverse and clinically validated apha-
sic speech datasets that reflect the heterogeneity of aphasic im-
pairments, significantly undermining the accuracy and so their
suitability of ASR in healthcare applications [12, 13, 14].

The AphasiaBank project (see section 2.1) marked a signif-
icant milestone in this field. Several research groups [11, 13, 15,
16] developed different ASR algorithms trained on this Aphasi-
aBank. Le et al. (2018) [11] successfully identified medically
relevant quantitative measures to predict aphasia and achieved
a 39% Word Error Rate (WER) for the ASR in spontaneous
aphasic speech, while previous studies reported a 45% WER
[13, 16]. However, it is essential to compare these rates with
those of healthy speakers, which typically exhibit around 10%
WER in studies that used attention-based architectures [17].

Previous investigations into aphasic speech recognition
on aphasia employed conventional ASR architectures, charac-
terised by distinct acoustic, linguistic, and pronunciation com-
ponents. These studies were primarily oriented towards a hy-
brid system of Hidden Markov Model Deep Neural Networks
(HMM-DNN) [11, 13, 18], or variations of Long Short-Term
Memory (LSTM) models [16, 19, 20]. A Cantonese version
of AphasiaBank has been implemented by Liu et al. (2018)
[21]. In this case, Multilayer Time Delay Neural Network
(MT-DNN) with a Bidirectional Long Short-Term Memory
(BLSTM) model structure was adopted. Such study obtained
18.5% of WER for unimpaired speech and 42.4% for impaired
speech [22]. Tang et al. (2023) [23] achieved significant im-
provements in AphasiaBank WER using attention mechanisms
like E-Branchformer and Conformers (combination of Convolu-
tional Neural Networks and Transformers), reaching an average
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WER of 26% across different levels of aphasia severity.
By using attention mechanisms, in this paper we introduce

a new contribution to the field by fine-tuning OpenAI’s Whis-
per ASR [17], minimising the WER to a level more accept-
able for clinical application compared to earlier attempts. To
achieve this we created SONIVA, a dataset specifically designed
to capture the diverse speech errors encountered in Patients with
Stroke (PwS), constituting a comprehensive quality-labeled cor-
pus. This work represents a significant step towards the devel-
opment of more efficient and accessible therapeutic interven-
tions for PwS. In the following paragraphs, we discuss the im-
plications and generalisability of our ASR model, highlighting
its impact on patient care and outlining directions for future re-
search in the field.

2. Methods
2.1. Dataset

The model was trained and tested using our in-house SONIVA
database (Speech recOgNItion Validation in Aphasia). This is
a comprehensive aphasic speech database developed for train-
ing ASR systems for clinical application. The corpus con-
sists of speech recordings of PwS who have participated in two
post-stroke longitudinal studies: IC31(Imperial Comprehensive
Cognitive Assessment in Cerebrovascular Disease [24]), and
PLORAS (Predicting Language Outcome and Recovery After
Stroke [25]). SONIVA contains speech recordings from ≈1000
PwS including speech when describing a picture scene from
the Comprehensive Aphasia Test (CAT) [26]. Uniquely, each
speech recording is accompanied by detailed quantitative as-
sessments of speech data in English, where trained speech ther-
apists transcribed audio recordings orthographically and pho-
netically using the International Phonetic Alphabet (IPA).

The labelled dataset used for this study comprises 425 audio
recordings of speech from 353 individuals with PwS, some of
whom underwent repeated testing to capture recovery and intra-
individual variability in speech. The total duration of the record-
ings was 10 hours. Additionally, we included the data of an age-
matched control group (µ = 60.63 years, σ = 9.50 years) with
a total duration of one hour, which was used to establish the
benchmark performance of ASR and enable a fair comparison
between healthy and pathological speech.

We used the open-access AphasiaBank dataset [27] for an
additional test set. The corpus contains data from 466 speakers,
including narrative and procedural types of discourse. Content
categorisation is based on aphasia severity, evaluated using the
Western Aphasia Battery scale [28] which generates an Aphasia
Quotient indicating mild, moderate, severe, or very severe apha-
sia [27, 29]. This diverse dataset offers a benchmark to assess
the generalisability of our models across different contexts in
terms of dialects, test protocols, and linguistic characteristics.
It demonstrates the adaptability and effectiveness of our fine-
tuned model in real-world scenarios beyond its original training
domain.

2.2. ASR Architecture

Whisper uses an encoder-decoder Transformer model; the en-
coder processes 80-channel log-Mel spectrograms utilising two
convolutional layers and sinusoidal positional encoding for effi-
cient and context-aware audio representation. A stack of trans-
former blocks extracts long-range dependencies within these
features. The decoder replicates this design, using learned posi-
tional embeddings and the same number of Transformer blocks,

1https://www.ic3study.co.uk

enabling a multi-task speech processing pipeline (such as tran-
scription, translation or voice activity detection). Whisper’s key
strength lies in its enormous healthy speech training dataset of
680 000 hours [17]. This variegated training dataset entails var-
ious environments, recording setups, speakers, and languages
(with approximately 20% being non-English). The language
models available differ in size in terms of parameter count (from
39M to 1.55B) and Transformers layer depth (4 to 32). The
encoder produces fixed-dimensional vectors, whose size (384
to 1280) increases with model capacity, while the temporal di-
mension (1500) remains constant. Whisper uses the same byte-
level BPE text tokenizer as GPT-2 [30, 31], supporting both
the English-only and multilingual models. The diversity of
the dataset, along with weakly supervised labels, contributes to
Whisper’s near-human-level accuracy on healthy speech [17].
Its robust and generalisable potential might align with the atyp-
ical acoustic patterns and heterogeneity found in pathological
speech.

2.3. Data Pre-processing

A team of two speech therapists and three trained postgraduate
students conducted verbatim transcriptions of the audio record-
ings, resulting in a high level of agreement (73% inter-rater
reliability at the word level). The transcriptions followed the
formatting guidelines provided by Codes for the Human Analy-
sis of Transcripts (CHAT) [32] and were processed using Com-
puterised Language ANalysis software (CLAN) [33]. To han-
dle special symbols used for error coding, such as those denot-
ing semantic inconsistencies or speech fragments, the text was
pre-processed to remove these symbols and punctuation. In in-
stances of neologisms or vocalisations, phonetic alphabet rep-
resentations were provided by the transcribers. These represen-
tations were then heuristically mapped to a sequence of phones
in the Latin alphabet without altering their sequence [18].

Furthermore, human transcriptions included false starts and
unique symbols for filler words like “er”, “erm”, and other
isolated sounds or interjections specific to aphasic speech pat-
terns. Previous experiments identified spelling variations in
filler words between American and British English leading to
an increase in WER due to differences in written linguistic
practices. Specifically, British usage includes “er” and “erm”,
whereas American usage includes “uh” And “um”. To address
this issue, we standardised these filler words according to pre-
dominant American English conventions within our Whisper
training dataset.

Subsequently, each conversation line was segmented to ex-
tract only the participants’ dialogue from both human transcrip-
tions and the audio file, excluding the assessor speech. This was
possible with the manually inserted timestamps in the transcrip-
tions and was later additionally verified with speech identifica-
tion techniques through Speech Brain [34]. After converting all
the files into .wav format and resampling at 16 kHz, the few au-
dio files longer than 30 seconds were discarded to comply with
Whisper’s constraints and to avoid memory problems. Simi-
larly, audio files shorter than 3 seconds were also excluded to
prevent potential issues during the computation of Fourier trans-
form for spectrograms generation or CTC layer alignment in
the neural network [29]. Our approach to segment data by sen-
tences, rather than fixed lengths, aimed to accommodate vari-
able sentence lengths and mitigate overfitting in the training. In
addition to Speech Brain, this processing utilised Python pack-
ages like FFmpeg [35], Pydub [36] and SoX [37].
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Figure 1: Comparison of Word Error Rate (WER) of non-fine-
tuned Whisper for different model sizes between Healthy Con-
trols (in green) and Aphasia Patients (in red) data of SONIVA.
∗∗∗ : p < 0.001; ∗∗ : p < 0.01; ∗ : p < 0.05.

2.4. Fine-Tuning

2.4.1. Training Data Allocation

After cleaning the SONIVA database and pre-processing the in-
terviewers’ speech, we obtained a corpus of around 7 hours of
audio data. The dataset was partitioned based on individual au-
dio files with varying durations, resulting in a split of 78% for
training (equivalent to 341 minutes), 13% for validation (equiv-
alent to 57 minutes), and 9% designated as the unseen test set
(equivalent to 40 minutes). Each division took into account a
stratified splitting based on the severity of aphasia cases, ensur-
ing a balanced representation of aphasia severity.

The held-out unseen test contained audio segments of pa-
tients that were not present in the training at all (i.e. even though
every patient has multiple audio segments, none of these have
been mixed in the training and validation). This selection en-
sured that the testing set was independent of the training and
validation data in any possible way, thereby mitigating bias and
allowing for a reliable assessment of model generalisation per-
formance. The choice to treat each patient’s data separately was
crucial in our effort to develop a tool designed for zero-shot ac-
curate transcription of individual patient speech.

2.4.2. Training Configuration

Both the encoder and decoder of Whisper (v. 20230124) were
trained. The training configuration used a batch size of 16
per device, implementing gradient accumulation for efficient
GPU resource utilisation. A cosine learning rate schedule was
adopted, starting with an initial learning rate of 1×10−5 and in-
corporating 500 warmup steps. Training was optimised through
AdamW, updating the entire model by the cross-entropy loss,
defined as

LCE = −
N∑
i=1

C∑
j=1

yij log(ŷij), (1)

where N is the total number of samples or data points, C is
the total number of classes or categories, yij is the true prob-
ability or label of class j for sample i and ŷij is the predicted
probability of class j for sample i.

Model evaluation took place every 1000 steps, with the goal
of minimizing the WER on the validation set. A final model was
saved at each 1000-step interval, and its retention depended on

demonstrating the best performance (i.e. lowest WER). Train-
ing continued until reaching a maximum of 6000 steps, util-
ising mixed-precision (fp16) for efficiency and gradient check-
pointing to manage memory overheads. The training was imple-
mented using PyTorch and Hugging Face Transformers repos-
itory, leveraging a NVIDIA RTX 6000 GPU. The Tiny model
required less than three hours to train, while both the Small and
Base models needed just over 3 hours; in contrast, training the
Medium model took approximately 7 hours.

The WER metric was based on the string edit distance.
This calculates the minimum number of steps required to con-
vert the output from Whisper to the actual human transcription
string. The WER between human and automated transcription
was first calculated from the off-the-shelf Whisper version, gen-
erating a baseline performance. Such baseline was then com-
pared with the fine-tuned WER. To assess the statistical signif-
icance, we performed non-parametric Mann-Whitney tests due
to its robustness against non-normally distributed data. We also
checked the statistical significance between the baseline perfor-
mances of healthy controls and the unseen test set; the results
are detailed in the next section.

3. Results
Three main findings are presented in this section. Firstly, we
show how the baseline performance of Whisper is significantly
different between healthy controls and patients (Fig.1). Across
all model sizes, Whisper performance resulted in higher WER
in patients (p < 0.05), with the highest difference found us-
ing the Tiny model (+ 24.32%). These findings confirm that the
worse baseline performances observed in SONIVA are intrinsi-
cally related to speech impairment characteristics and not due to
audio quality concerns. It is important to note that some audio
segments scored a WER larger than 100%. This is given by the
calculation of this measure, which is the addition of insertions,
deletions, and substitutions required to transform the reference
transcription (the ground truth) into the hypothesis transcrip-
tion (the model’s output), divided by the number of total words.
Therefore, if the number of operations to change the string ex-
ceeds the total number of words in the sentence, the resulting
WER can indeed be greater than 100%.

Secondly, we focused on the impact of fine-tuning through
SONIVA, divided by training, validation and held-out unseen
set. When compared with their respective baseline, our anal-
ysis demonstrated robust statistically significant improvements
for every model size (2nd row of Table 1). The Tiny and Base
model experienced a similar improvement in terms of WER (-
4.3% and -3.5% respectively). However, the most substantial
improvements were evident in the larger models. For the Small
model, fine-tuning led to a 11.3 percentage reduction in WER,
highlighting the model’s enhanced capability to accurately tran-
scribe PwS speech. Likewise, in the Medium, the WER de-
creased by 10.9%, further affirming the efficacy of fine-tuning
in adapting the model to the variability of post-stroke speech
patterns.

Thirdly, in the assessment of the AphasiaBank dataset,
aimed at the evaluation of the fine-tuned Whisper general-
isability properties, promising results emerged across most
model sizes. Particularly noteworthy were the improvements
in the Base, Small, and Medium datasets, where the fine-tuned
model obtained significant improvements when compared to
their baseline version (3nd row of Table 1). Specifically, the
Medium model demonstrated exceptional robust generalisation
capabilities, achieving a substantial reduction of 14.3 points in
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Dataset Tiny
(39M)

Base
(74M)

Small
(244M)

Medium
(769M)

Baseline Fine-Tuned Baseline Fine-Tuned Baseline Fine-Tuned Baseline Fine-Tuned

SONIVA Validation 62.8% 38.2% 42.8% 28.1% 55.4% 32.1% 37.1% 25.9%
SONIVA Unseen 36.6% 32.3% 38.5% 35.0% 26.8% 15.5% 25.6% 14.7%
AphasiaBank 40.3% 42.9% 38.1% 29.1% 33.8% 24.4% 35.8% 21.5%

Table 1: Average Word Error Rate for different Whisper model sizes on various datasets, comparing fine-tuned and baseline perfor-
mances. All fine-tuned models showed statistically significant improvements with respect to their baseline (p < 0.01).

WER, reducing from 35.8% to 21.5%. However, an exception
was observed with the Tiny model on the AphasiaBank dataset.
Here fine-tuning resulted in a slight degradation of WER per-
formance by 3.6%. Such result highlights the challenge that
smaller models face in effectively generalising across diverse
test sets compared to their training data.

Overall, despite the exception of the Tiny model with the
AphasiaBank, we experienced a success in the fine-tuning
across multiple model sizes and dataset sources, highlighting
the models’ robustness in understanding the specific nuances of
impaired speech while adapting to diverse linguistic contexts.

4. Discussion
By fine-tuning the state-of-the-art ASR with our dataset of
aphasic speech, we were able to achieve the best performance
of such models reported in the field thus far. More importantly,
the analysis of the model performances on the SONIVA unseen
dataset and the AphasiaBank demonstrates the generalisability
of the fine-tuned models of Whisper, a feature useful when ap-
plied in healthcare settings. Our best WER achieved in this
study surpasses outcomes reported in comparable investigations
tested on the AphasiaBank [11, 13, 15, 16, 19, 20, 21, 23], as
elaborated in Section 1. Further, our results are particularly sig-
nificant since our model was not trained on AphasiaBank itself
but on a different dataset. This work also emphasises the re-
lationship between model complexity and generalisation, since
smaller models revealed poorer performances when applied in
speech contexts different from that used for training.

It is plausible that fine-tuning accurately enhances the
model’s ability to learn fluency and phonological deficits of
PwS, thereby enabling the recognition of these patterns even
in disparate datasets. In the fine-tuned version, improvements
were observed in dysfluencies such as whole-word and whole-
phrase repetition, syntactic errors, or filler-word usage, which
were previously overlooked or transcribed incorrectly by the
ASR. However, challenges persist, such as the skipping of in-
telligible words and patterns like false starts (e.g. “The k- kit-
um... the kitty”), as well as the frequent usage of filler words in
patients which were, in the automated transcription, not always
transcribed. Indeed, while fine-tuning significantly improves
performance, the WER remains relatively high compared to the
typical 10-13% achieved in healthy speech recognition [17].
Thus, although our current performance has improved over ear-
lier attempts, it may not yet meet the stringent requirements of
clinical settings.

The baseline performance on the American AphasiaBank
dataset is lower compared to our PwS validation dataset, likely
due to Whisper’s predominant training on American English
speakers. This discrepancy highlights the importance of con-
sidering dataset-specific features when evaluating model perfor-

mance across different datasets. Additionally, although the un-
seen set was chosen based on a balanced stratification of apha-
sia severity, the baseline WER is lower than that of the valida-
tion set. Therefore, interpreting a 14.7% WER (our best result)
should be approached judiciously, considering the significant
role played by variability in speakers’ impairments and their
diagnoses. This observation underscores the need for develop-
ing speech pathology tools that prioritize tailored assessments
rather than standardised diagnoses - a shift crucial for achieving
accurate recovery outcomes for each individual patient.

5. Limitations and Future Work
The results demonstrate how the improved WER represents a
promising solution for efficiently using ASR tools in pathologi-
cal speech recognition. However, it is important to acknowledge
limitations that require consideration. Specifically, the Large
model of Whisper was not tested in this study. With 1.5 billion
parameters, such model could have offered further insights into
the interplay between model complexity and performance. Fur-
ther optimisation of training parameters and the use of speech
enhancement techniques such as noise reduction could improve
the accuracy of ASR systems. Lastly, although gathering 7
hours of data is a significant achievement for a pathological
speech dataset, it remains relatively small for comprehensive
fine-tuning purposes given its intended clinical application.

We aim to enhance this work by training Whisper Large
model with our growing SONIVA dataset, integrated with
AphasiaBank and additional data augmentation techniques.
Given that our dataset uniquely includes phonetically labelled
data with the IPA, we plan to use this information to gain valu-
able insights into automatic detection of phonetic errors. This
area has been relatively unexplored due to the scarcity of pho-
netic datasets and the challenges in adapting models trained on
standard English text to IPA. Consequently, one of our future
directions involves leveraging both phonetic and standard text
transcriptions to develop a multimodal system capable of accu-
rately assessing post-stroke speech.

6. Conclusion
The superior performance of our model in recognising speech
from diverse dialects and test-protocols in post-stroke patho-
logical speech emphasises its potential for healthcare settings.
These speech recognition systems can be customised to pro-
vide therapeutic recommendations, reduce the workload on
healthcare providers and enhance professionals’ care delivery.
This work represents a significant advancement in pathologi-
cal speech recognition, laying the groundwork for transforma-
tive developments in AI-powered health interventions and the
broader expansion of remote patient care.
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