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Abstract

Although Automatic Speech Recognition (ASR) systems hold great potential for
diagnosing and monitoring speech disorders, their clinical utility has been limited
due to the scarcity of pathological speech data capable of capturing the heterogene-
ity of speech disorders and the high-dimensional output space. This work presents a
significant advancement by fine-tuning the Whisper foundation model on our novel
in-house SONIVA dataset, which consists of ≈600 stroke patients with diverse
speech impairments. We address the critical challenge of limited training data in
healthcare ASR demonstrating that our stroke-specific model generalises effectively
across diverse speech pathologies. Our model outperforms both the off-the-shelf
Whisper and traditional disorder-specific ASR models, demonstrating improved
recognition accuracy on SONIVA unseen patients, as well as AphasiaBank and
DementiaBank. This extends beyond stroke-related language impairments, im-
proving performance also in other neurological disorders. This cross-pathology
approach was achieved through training on a single disorder with a heterogeneous
impairment profile, representing a major step towards more adaptable disordered
speech recognition in healthcare. Our study highlights how adapting foundation
models for clinical tasks can advance universal speech disorder recognition despite
data scarcity, with broad implications for diagnosis, monitoring, and patient care,
potentially enabling more accessible and personalised speech therapy.

1 Introduction

Recent advancements in large-scale pre-trained models have hastened significant progress in health-
care research, transcending traditional machine learning approaches through their transfer learning
ability and multi-task generalisation. Within the field of neurology, by integrating diverse inputs such
as acoustic signals, linguistic structures, and clinical metadata, these models can infer unique and
scalable representations of patient health directly from speech. Given the heterogeneity of speech
errors, Medical Foundation Models (MFM), reaching remarkable in various healthcare domain, repre-
sent an optimal opportunity for capturing the intricate temporal and spectral features of pathological
speech while concurrently modeling higher-level linguistic and cognitive impairments. However,
effective application of MFM in clinical speech settings requires fine-tuning on specific datasets, as
the inherent variability and complexity of speech disorders with a given neurological damage can
limit performance without tailored adjustments. Thus, while MFM demonstrate significant potential,
targeted fine-tuning is essential to fully leverage their capabilities in addressing the unique challenges
underlying neurological conditions of different nature.
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SONIVA, our in-house built database, addresses the critical gap in available datasets for fine-tuning
foundation models like Whisper. Post-stroke speech databases present an optimal condition for this
purpose due to the significant speech impairment heterogeneity that results from a wide range of
stroke lesion topologies. This diversity leads to a range of speech symptoms that frequently overlap
with those found in other neurological disorders, such as Parkinson’s disease (e.g. reduced phonation),
cerebral palsy, multiple sclerosis, amyotrophic lateral sclerosis (dysarthric speech), or dementia (e.g.
reduced speech fluency and lexical complexity). The primary objective of this paper is to investigate
the efficacy of fine-tuning Whisper for post-stroke speech recognition. The second aim is to evaluate
its generalisability using three distinct datasets: AphasiaBank [1], TORGO [2] and DementiaBank
[3]. AphasiaBank is an international post-stroke aphasia speech bank, which introduces variability in
terms of dialects and test protocols. TORGO and DementiaBank expand the range of speech disorders
in our study: TORGO represents speech impairments caused by cerebral palsy and amyotrophic
lateral sclerosis (ALS), while DementiaBank captures the speech changes associated with cognitive
decline in dementia.

For this task Whisper model was selected due to its demonstrated ability to achieve near-human-level
accuracy on healthy speech even in low-resource data scenarios, as shown in [4] when compared
with the latest ASR models. Additionally, Whisper can be deployed locally, allowing all processing
to occur on secure, on-site systems. This minimizes the need to transmit patient sensitive data over
networks or to cloud services, ensuring compliance with strict privacy regulations. Local deployment
also enables real-time processing without relying on internet connectivity, which is crucial in clinical
settings where consistent access to high-speed internet may not be available.

After fine-tuning the model we demonstrate that the additional training not only enhances its perfor-
mance for stroke-related speech impairments, but also enables the model to leverage this variability
to generalize to speech disorders in pathologies beyond stroke. This showcases the potential clinical
applicability of our fine-tuned model, as it holds implications for improving diagnostic processes,
therapy planning, and overall patient care across a spectrum of neurological conditions. Such work
represents a pioneering step towards developing a universal speech recognition system capable of
handling diverse communication disorders.

2 Background

2.1 Speech and neurological disorders

Stroke can lead to a wide range of communication disorders, affecting various aspects of speech and
language processing depending on the location and extent of brain damage. These impairments can
manifest in varying degrees of severity, affecting different aspects of the communication process and
often coexisting in combination [5]. Aphasia, a common consequence of stroke, disrupts language
processing, causing difficulties in speech production, comprehension, reading, or writing. Patients
with fluent aphasia produce connected speech that sounds natural in rhythm and intonation, but may
experience word-finding problems affecting mostly nouns and picturable action words [6]. They often
exhibit phonemic (e.g., "cat" to "pat"), semantic (e.g., "fork" to "knife"), or verbal paraphasias (e.g.,
"apple" to "gorilla"). Non-fluent aphasia, on the other hand, is characterised by slow and hesitant
elocution with episodes of agrammatism, such as the absence or improper use of function words
and verbs [7]. The speech is typically fragmented, choppy, and awkwardly articulated [6], often
containing neologisms or jargon.

Cognitive-communication disorders may also arise, affecting higher-level language functions and
impacting a patient’s ability to effectively convey ideas or engage in social interactions. Apraxia
of speech, another potential sequela of stroke and some neurodegenerative dementias, affects the
motor planning necessary for speech, resulting in inconsistent articulation errors and challenges
in sequencing speech sounds correctly. Voice quality can be significantly altered by dysphonia,
characterised by changes in pitch, loudness, or overall voice quality due to impairment of the
laryngeal muscles [8]. Dysarthria, another motor speech disorder that targets the articulatory muscle
control, often accompanies these impairments following stroke, leading to slurred speech, altered
rhythm, and reduced intelligibility due to muscular weakness or incoordination [9]. These various
disorders frequently coexist creating unique speech patterns for each individual. Furthermore, there
is heterogeneity of these impairments between patients, and within the same patient over time [10].
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This broad spectrum of post-stroke impairments is key to the creation of a universal MFM. Stroke
episodes stems from the variable locations where blood clots can form in the brain, potentially
affecting multiple regions responsible for different aspects of speech production and language
processing. In contrast, other disorders unlike stroke commonly arise from more localized or focal
damage, resulting in a more homogeneous presentation of language deficits.

2.2 Automation of personalised assessment

Given the heterogeneity of language disfluencies, a one-size-fits-all approach to speech assessment
and therapy is inadequate. Each patient presents a unique combination of impairments, necessitating
highly individualized treatment plans. Traditionally, comprehensive speech and language assessments
require frequent face-to-face sessions with trained speech-language pathologists [11]. However,
accessing this level of tailored diagnosis and ongoing therapy can be costly for both patients and
healthcare providers, further compounded by the logistical challenges posed by additional impair-
ments resulting from stroke [12; 13; 14]. This situation underscores the need for more flexible,
scalable tools that can accommodate the wide range of speech patterns observed in stroke survivors.
Automatic Speech Recognition (ASR) systems could potentially address these challenges, streamlin-
ing the assessment process and allowing more frequent and cost-effective evaluations, potentially
remote. Providing a detailed, objective measurement of speech characteristics, these models could
potentially support clinical decision-making for speech monitoring.

Despite the significant advancements in speech recognition technology for typical speech, the accuracy
achieved for pathological speech remains substantially lower. This discrepancy is primarily attributed
to the lack of big datasets of pathological speech impairments that contain the diverse range of
potential speech errors. Recent developments in foundation models have shown promising results in
addressing this challenge. These large-scale models, trained on vast amounts of diverse data, already
demonstrated the ability to generalise across different domains, outperforming traditional machine
learning models that were specifically trained on pathological speech [15].

2.3 Medical Foundation Models for language and speech

The advent of foundation models in healthcare has significantly impacted language research, especially
with BioBERT [16] and ClinicalBERT [17], released in early 2019 following BERT [18], that marked
a significant milestone in healthcare language modelling. The launch of ChatGPT [19] in late 2022
further accelerated this trend, broadening the accessibility and application of foundation models in
healthcare settings [20]. The advancements of Large Language Models (LLMs) have surely played a
crucial role in enhancing foundation models, particularly in their ability to understand and generate
context-rich, domain-specific language, which is essential for accurate language analysis in healthcare
settings. Looking at the most recent work, multimodal LLMs, such as GPT-4V [21], offered significant
potential in augmenting clinical decision-making and management, though challenges in regulation
and validation remain [22]. Me-LLaMA [23], a novel medical LLM family, also demonstrated
superior performance across general and medical tasks compared to existing open-source medical
LLMs.

In the domain of MFM applied to speech processing, the authors of [24] investigated the impact
of layer selection in speech foundation models, specifically wav2vec 2.0 [25], on the prediction of
pathological speech features relevant to neurological conditions. The authors found that selecting
optimal layers can significantly enhance performance, even though the generalisation to unseen data
in their work remained a challenge. An interesting approach was shown in [26], where the authors
developed a Perceiver-based sequence classifier for detecting speech abnormalities associated with
neurological disorders. Their model leveraged a Universal Speech Model (USM), a type of foundation
model pre-trained on an extensive dataset of 12 million hours of audio. The model was evaluated
on three critical clinical tasks: vowel prolongation, alternating motion rate, and sequential motion
rate, aiming to predict 14 distinct speech attributes. This approach exemplifies the potential of using
large-scale pre-training in the speech domain, similar to the successes seen with LLMs in text-based
tasks.

Building upon these advancements in speech foundation models, recent research has explored the
specific application of Whisper to the domain of speech disorders [27; 28; 29; 15; 30; 31; 32; 33],
given its robustness also on low resources databases[34]. Sanguedolce et al. (2023) [15] used
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Figure 1: Pipeline of the main experiment on Whisper [4] fine-tuned on SONIVA data only, followed
by evaluation on multiple external datasets to assess generalisation.

Whisper on post-stroke speech, reaching a Word Error Rate (WER) of 38.5% with the off-the-shelf
model, in line with those achieved by traditional ASR trained specifically on pathological speech.
In work [35], the authors leveraged Whisper with AphasiaBank database to differentiate various
types of aphasias and distinguish them from healthy controls. They extracted linguistic features such
asfluency, coherence, lexical richness, syntax, and pronunciation, reaching an F1 score of 90.6%.
Using the Cantonese version of AphasiaBank, earlier studies with traditional ASR have achieved
notable advancements [36]. Using Multilayer Time Delay Neural Networks (MT-DNN) with a
Bidirectional Long Short-Term Memory (BLSTM) structure, the authors achieved a WER of 18.5%
for unimpaired speech and 42.4% for impaired speech. More recent studies have shown significant
improvements using attention mechanisms like E-Branchformer and Conformers, reaching an average
WER of 26% across various aphasia severity levels [37] when trained on Aphasia Bank. Dysarthria
has been also extensively researched, particularly due to the availability of specialised databases
such as TORGO [2] or UA-Speech [38]. Nevertheless, such databases contain a limited number of
speakers (N = 8 and N = 15 respectively), hindering the development of robust models. For this
reason, [39] implemented a two-stage training data augmentation scheme. This approach significantly
improved ASR performance on dysarthric speech, achieving a notable 20.6% WER. Similarly, as a
data augmentation approach, the study from [27] demonstrated that using diffusion-based text-to-
speech models to generate synthetic speech samples that mimic dysarthric speech characteristics can
improve fine-tuned ASR performance, particularly on the Whisper model.

Overall, these studies highlight the need to develop models and techniques that maximise the utility
of existing datasets, addressing the challenge of limited availability of pathological speech data. Even
though there has been a progression from traditional ASR systems to more advanced models such
as Whisper, critical technical challenges still persist in handling the domain shift between typical
and pathological speech, especially when comparing the average WER reached on healthy speech
(10-13% [4]). To address these issues, our study introduces a fine-tuned Whisper model approach for
pathological speech recognition. By leveraging transfer learning on diverse speech disorder datasets,
we aim to improve ASR performance across various types of speech impairments, potentially bridging
the gap between current technological capabilities and clinical needs in automated universal speech
analysis.

3 Methods

3.1 SONIVA database

The primary database used in this study is SONIVA, an in-house comprehensive corpus of post-stroke
speech built for clinical and scientific research into training automatic speech recognition systems
in the context of disordered speech. Such corpus aims to be a substantial and valuable resource for
the wider research community. It includes speech recordings from ≈1000 people with stroke who
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participated in two longitudinal studies: IC31(Imperial Comprehensive Cognitive Assessment in
Cerebrovascular Disease [40; 41]), and PLORAS2 (Predicting Language Outcome and Recovery
After Stroke [42]). All participants were consented as per appropriate study ethics approval prior to
testing. The speech recordings contain pictures description tasks from the Comprehensive Aphasia
Test (CAT [43]) and a beach scene picture stimuli. The dataset is further complemented by detailed
orthographic English transcriptions by trained speech pathologists, as well as phonetic transcription
using the International Phonetic Alphabet. The transcriptions further undergo quantitative linguistic
assessments using CLAN [44]. For this study, the labeled dataset used consists of 794 audio recordings
from 578 unique Patients with Stroke (PwS). Some of these individuals underwent repeated testing to
capture longitudinal recovery and individual variation in speech patterns. Overall, 15 hours of speech
data were included in this study.

Although all the speech tasks were performed in British English, SONIVA also includes some patients
with accents from a wide geographical distribution (Figure 3). The majority of individuals in the
database have UK-based (76.77%), while the remaining speech samples had European (2.99%),
South Asian (3.67%), African (2.85%), Central American (2.58%), Oceanian (0.68%) and North
American (0.27%) origin. The accents were determined by considering both the speakers nationalities
and the acoustic-phonetic analysis conducted by trained speech therapists. The remaining 10.19% of
the speakers had an unknown or mixed accent, not categorised in the above classes.

The distributions of age at test for the different genders are displayed in Appendix A (Figure 4).
The speakers were predominantly male (70.79%), with an average age of 61.96 years at testing. In
contrast, the average age for female speakers was 58.52 years. This gender unbalance reflects the
world-wide higher incidence of stroke among males [45]. Additionally, the age distributions are both
left-skewed as expected given the age distribution of stroke cohorts.

3.2 Data pre-processing

A team of two speech therapists and three trained postgraduate students transcribed the audio record-
ings verbatim, achieving a high level of consistency (73% inter-rater reliability). The transcriptions
adhered to the formatting guidelines of the Codes for the Human Analysis of Transcripts (CHAT)
[46], and were subsequently processed using the Computerized Language Analysis (CLAN) [44]
software. A pre-processing step was applied to remove the special symbols used for linguistic
error coding, such as semantic, phonological and dysfluencies-related errors. The transcribers also
provided phonetic alphabet representations in case of neologisms or vocalisations, which were later
heuristically converted to a sequence of Latin alphabet phonemes without altering the original order
[47]. The human transcriptions included codes for false starts and unique symbols for filler words e.g.
“er", “erm", and other isolated sounds or interjections typical of dysfluent speech. Previous research
found spelling variations in filler words between American and British English, leading to higher
WER due to differences in written linguistic conventions. Specifically, British usage includes “er"
and “erm", whereas American usage includes “uh" and “um". To address this, we normalised these
filler words according to the prevalent American English conventions in our Whisper training dataset.

The files were segmented by utterances, with the transcriptions and corresponding audio files aligned
using the manually inserted timestamps by the expert transcriber, as we did in [15; 30; 48]. This
allowed the mapping of the start and end of each utterance to the associated audio segment. By
segmenting the data into sentences instead of fixed-length chunks, we accounted for the varying
utterance length, mitigating the risk of overfitting during the training process. Some audio files
included the assessor’s speech, which was also transcribed. For training purposes, these were
excluded to allow the model to solely learn patients’ speech only. Whisper is unable to process
long-form audio files exceeding 30 seconds. To address this limitation, such files were segmented
further together with their aligned transcriptions. Similarly, audio files shorter than 3 seconds were
prone to potential issues in the computation of Fourier transform for spectrograms generation [49].
Rather than discarding these shorter files, they were merged together with the aligned transcripts
when they belonged to the same speaker, in order to avoid wasting resources during the training
process. The files were subsequently converted into .wav format, resampled to 16 kHz with a 16-bit

1https://www.ic3study.co.uk; study approved by South West - Frenchay Research Ethics Committee [ref.
IRAS 299333], and authorized by the UK’s Health Research Authority (HRA).

2https://ploras.ucl.ac.uk; study approved by the London Queen Square Research Ethics Committee [ref.
IRAS 133939], and authorized by the UK’s Health Research Authority (HRA).
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resolution and downmixed from stereo to mono. At the end of the pre-processing the final duration
of the database was 13 hours. Alongside Speech Brain, these processing utilised Python packages
Pydub [50], FFmpeg [51] and SoX [52].

3.3 AphasiaBank, TORGO and DementiaBank databases

To evaluate the generalisation capabilities of our fine-tuned model, we utilized three well-established
databases in the field of disordered speech recognition. AphasiaBank [1] is a large, shared database of
multimedia interactions for the study of communication in aphasia. It contains speech samples from
466 individuals with various types of aphasia, primarily resulting from stroke. The database includes
a diverse range of structured speech tasks, including picture descriptions, personal narratives, and
procedural discourse. It uses the CLAN and CHAT files structure as used in the SONIVA database.

The TORGO database [2], instead, focuses on dysarthric patients with cerebral palsy and amyotrophic
lateral sclerosis. It contains aligned text and acoustic data from 8 speakers, with multiple sessions
of testing. The speech samples mainly consist of elicited single-word prompts, with the recordings
segmented into individual word utterances. DementiaBank [3] is a large corpus of speech samples
from individuals with neurodegenerative cognitive disorders, ranging from mild neurocognitive
disorders to Alzheimer’s disease. It contains spontaneous speech recordings of subjects performing
cognitive tasks, such as picture description tasks or recalling stories all made by long-form files, like
SONIVA and AphasiaBank. This database provides insights into the language changes associated
with cognitive decline, including difficulties with word-finding, stuttering, false start, decreased
syntactic complexity and reduced informational content.

These databases were selected to complement our stroke dataset in the evaluation step. AphasiaBank,
sharing the post-stroke etiology but differing in dialect and assessment protocols, tests Whisper’s
ability to learn general stroke-specific speech patterns beyond our dataset’s features. TORGO,
representing motor speech disorders from non-stroke neurological conditions, challenges the model
with divergent speech patterns but also with single-word audio files, requiring Whisper to adapt its
processing strategy between phonetic-focused and language model-based approaches. DementiaBank
introduces speech affected by cognitive decline, presenting distinct challenges from aphasia and
motor speech disorders. This selection allows us to assess the fine-tuned model’s robustness across
varied disordered speech, differing in etiology (stroke, neurodegenerative diseases, speech motor
disorders), symptomatology (language processing deficits, motor speech impairments, cognitive
decline), assessment contexts, and processing demands.

3.4 Model architecture

Whisper showcases the power of foundation models in speech recognition, leveraging a massive
pre-training dataset and a versatile architecture. It is an encoder-decoder transformer model designed
for multi-task speech processing. The encoder processes 80-channel log-Mel spectrograms using two
convolutional layers and sinusoidal positional encoding, followed by a stack of transformer blocks
for extracting long-range dependencies. The decoder mirrors this structure with its learned positional
embeddings [4]. Whisper’s key strength lies in its extensive pre-training on a diverse dataset of
680 000 hours of speech, encompassing various acoustic conditions, speakers, and languages. Such
features align with the foundation model paradigm, where large-scale pre-training on diverse data
enables robust generalisation. The model varies in size, with differences in parameter count and
transformer layer depth. The encoder generates fixed-dimensional vectors that scale with model
capacity, while maintaining a constant temporal dimension. Whisper employs a byte-level Byte-Pair
Encoding (BPE) tokenizer, the same as GPT-2 [4; 53], supporting both monolingual and multilingual
models. This tokenisation strategy allows efficient handling of out-of-vocabulary words and potential
cross-lingual transfer. Whisper’s near-human accuracy on healthy speech, achieved through weak
supervision and diverse training data, establishes a solid foundation for fine-tuning on disordered
speech tasks. This suggests strong potential for a MFM that can adapt to the atypical acoustic patterns
and heterogeneity found in pathological speech.

3.5 Fine-tuning

SONIVA dataset was partitioned based on individual audio files with varying duration, resulting in a
split of 70% for training (551 minutes), 18% for the validation (141 minutes) and 12% of unseen test
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set (94 minutes). Each division took into account a stratified splitting based on the severity of stroke
cases, ensuring a balanced representation of speech severity. The unseen test set comprised audio
recordings from patients who were entirely absent from the other splits. By maintaining this rigorous
division, we established a truly independent evaluation framework, effectively minimising potential
biases and enabling a robust assessment of the model’s ability to generalise to unseen individuals.
For the main experiment, only SONIVA database was used, as shown in the pipeline in Figure 1.
However, after observing the results of this main experiment, we conducted an additional experiment
using the TORGO dataset (see Table 1). For this follow-up study, we created an additional TORGO
unseen test set by randomly selecting 2 out of 8 patients’ speech data. The additional evaluation of
external databases were also performed, following the SONIVA experiment.

For the fine-tuning, in any training experiment, the Whisper medium-sized model was selected,
opting to update all trainable parameters without freezing any layers. This approach allowed for
comprehensive adaptation to both deeper high-level language layers and the final feature-specific
layers. A batch size of 16 for each device was adopted, with gradient accumulation to maximise
GPU efficiency. The cosine learning rate schedule was implemented, initiating the learning rate at
1 × 10−5 and incorporating a warm-up period of 1000 steps. The optimisation process relied on
the AdamW algorithm, which updated all model parameters based on the cross-entropy loss function.
We conducted model evaluations at 1000-step intervals, with the primary objective of reducing
the WER on our validation dataset. At each of these intervals, the model would be saved at the
checkpoint, reaching the a maximum of 6000 steps. The best-performing model was retained, as
determined by the lowest WER score. To optimise computational efficiency, a mixed-precision
arithmetic (fp16) was implemented, with gradient check-pointing to effectively manage memory
usage. The entire fine-tuning procedure, which lasted approximately 8 hours, was executed using
the PyTorch framework [54] in conjunction with the Hugging Face Transformers library [55]. All
computations were carried out on a single NVIDIA RTX 6000 GPU.

The WER was selected as evaluation metric, which is derived from the string edit distance. This
measure quantifies the minimum number of modifications needed to transform Whisper’s output
into the corresponding human-generated transcription. To establish a performance benchmark, we
first calculated the WER using the original, off-the-shelf Whisper model. We then compared this
baseline performance against the WER achieved by our fine-tuned model. To determine the statistical
significance of our results, we employed the non-parametric Wilcoxon rank-sum test. We chose this
test due to its robustness when dealing with data that may not follow a normal distribution and the
paired observations between non-tuned and fine-tuned distributions for all the databases.

4 Results

The summary of the WER average distribution is shown in Fig. 2. The differences between the
non-tuned models and models fine-tuned on our SONIVA databasewere all found to be statistically
significant (p < 0.001 for all comparisons). Compared to the other databases, the model tested
on TORGO exhibited a much higher range of WER values for both models. In contrast, the
DementiaBank and AphasiaBank datasets had WER values in a range comparable to the both the
Validation and unseen SONIVA sets.

As shown in Table 1, fine-tuning on SONIVA significantly improved performance, achieving WERs
of 21.51% and 21.93% on the validation and test sets respectively, compared to the baseline model’s
39.60% and 43.62%. Subsequently, the model’s robustness was first evaluated on AphasiaBank,
where it achieved a WER of 28.55% compared to the baseline’s 45.77%. This relative reduction
of 37.62% is particularly noteworthy given the diverse nature of aphasic speech patterns and the
differences in recording conditions and task structures between SONIVA and AphasiaBank.

The cross-disorder evaluation on DementiaBank also reported significantly better performances of
the fine-tuned model (36% WER) compared to the baseline Whisper model (42% WER). Focusing
on the TORGO database, the fine-tuned Whisper model showed a decrease in performance, from 45%
(baseline) to 53% (fine-tuned). This counter-intuitive result highlights the challenges of generalising
across different speech tasks (continous speech vs single word tasks), and different types of speech
disorders. The limited sample size of TORGO (N = 8 subjects) may also have contributed to this
outcome, not correctly representing dysarthria severity.
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Figure 2: Distributions of Word Error Rate (WER) for transcriptions derived from non-tuned (red)
and SONIVA fine-tuned (blue) Whisper, on the four different databases. Each dot correspond to an
individual audio file. The dashed lines represent the weighted WER. Wilcoxon rank-sum tests were
performed between the two models at a database level. ∗∗∗ : p < 0.001.

Dataset - WER

SONIVA - validation SONIVA - unseen AphasiaBank DementiaBank TORGO

Non-tuned Model 39.60% 43.62% 45.77% 41.34% 45.40%

Fine-tuned w/SONIVA 21.51% 21.93% 28.85% 34.89% 53.45%

Fine-tuned w/TORGO - 42.12% 43.92% 42.48% 26.44%♦

Table 1: Average Word Error Rate (WER) using off-the-shelf baseline Whisper (non-tuned) and
fine-tuned on SONIVA or TORGO database. The average is the mean of the WER for the individual
audio samples, weighted by the length of the sentence.
♦: obtained from the model fine-tuned on a subset of the TORGO, and tested on unseen speakers.

Given this unexpected performance decline, we conducted an additional experiment by fine-tuning
Whisper exclusively on TORGO data, setting aside 2 out of 8 patients as unseen data (as detailed
in Section 3.5). This TORGO-specific model showed dramatic improvement in WER on his own
TORGO unseen set, decreasing from 45.40% (non-tuned) to 26.44%. This substantial enhancement
demonstrates the model’s capacity to adapt effectively to the specific speech task when provided with
appropriate training data, even on patients not present in the training. Interestingly, this TORGO-fine-
tuned model shows a worsened performance on DementiaBank, with WER increasing from 41.34%
to 42.48%.

However, the TORGO-fine-tuned model’s performance on SONIVA and AphasiaBank datasets
remains relatively unchanged compared to the non-tuned model. This pattern indicates that the
features learned from predominantly single-word tasks in context of dysarthric speech, does not
transfer well to aphasia-related speech impairments captured through spontaneous long-form speech
tasks, mirroring previous results on SONIVA fine-tuned model.

5 Discussion

Our Whisper ASR model, fine-tuned on speech from PwS, demonstrated significant generalisation
capabilities both within and across speech disorders. The model’s robustness within post-stroke
speech impairments is evident by consistent WER scores across SONIVA’s validation and test sets,
indicating reliable out-of-sample prediction. Further validating its performance on aphasic speech,
the results on AphasiaBank are particularly noteworthy. Despite differences in accent, test protocol,
and speech type (predominantly spontaneous), the model maintained strong performance, suggesting
successful adaptation of its attention mechanisms and language modeling components to diverse
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linguistic contexts. The WER achieved on both unseen SONIVA and AphasiaBank aligns or surpasses
state-of-the-art performance on pathological speech recognition (see Sec. 2.3).

Moving to cross-disorder evaluation, the model’s performance on DementiaBank revealed promising
transfer learning capabilities for neurodegenerative dysfluencies. Our SONIVA-fine-tuned model
demonstrated superior performance compared to previous studies in the field. For instance, in
analysing speech from patients with fronto-temporal lobar degeneration, [56] reported WERs of 37%
for semantic dementia and 61% for progressive nonfluent aphasia, while [57] achieved an average
WER of 39.83% on DementiaBank across different speaker subsets. However, when testing our
TORGO-fine-tuned model on DementiaBank, performance showed no improvement over the baseline
(42.48% WER). This finding reflects the mismatch between TORGO’s single-word training domain
and DementiaBank’s continuous speech data, highlighting the importance of training data structure
in cross-disorder generalisation.

The performance degradation observed when testing SONIVA-trained Whisper on TORGO reveals
fundamental challenges in adapting foundation models to single-word tasks. Whisper’s architecture,
optimised for continuous speech, employs several mechanisms specifically designed for sentence-
level processing. These include long-range dependencies, positional encoding, and contextual word
probabilities—components that become notably less effective when processing single-word utterances,
which comprise the majority of TORGO’s data. The architectural limitations manifest in multiple
ways: positional encoding becomes irrelevant without sequential context, attention mechanisms
lack sufficient tokens for meaningful contextual relationships, and the language model’s predictive
capabilities are underutilized without word dependencies. Additionally, the encoder’s convolutional
layers, designed for continuous speech patterns, may not optimally capture the isolated phonetic
features crucial for single-word recognition. This architectural mismatch explains both the lack
of improvement and the performance decline observed after fine-tuning on continuous post-stroke
speech. Further, the mismatch between post-stroke and purely dysarthric speech may have stretched
the model’s ability to generalise effectively.

Indeed, as expected, in our additional experiment with TORGO-exclusive fine-tuning the model
showed an improvement only on its own unseen test set, while maintaining the same performance
on long-form speech. But importantly, it also did not degrade in performance. This behavior can be
attributed, in part, to the limited size of the TORGO dataset, which likely lacked sufficient data to
substantially alter the model’s pre-trained weights optimised for continuous speech. Consequently,
while the model successfully adapted to TORGO’s single-word structure, it preserved its baseline
capabilities on continuous speech without significant regression. This finding highlights how dataset
size influences task-specific adaptation: smaller datasets may enable targeted improvements without
compromising the model’s general capabilities, effectively constraining the degree of specialisation.

6 Limitations and future work

Our study, while demonstrating the potential of fine-tuned Whisper models for post-stroke speech
recognition, reveals several limitations that must be acknowledged. Firstly, we utilised the medium-
sized Whisper model, leaving unexplored the potential benefits of its larger variant which, with its
increased parameter count, could yield better performance. Additionally, we did not implement speech
enhancement techniques during data pre-processing, potentially limiting the model’s robustness. This
omission may have affected the model’s ability to handle background noise and distortions—common
challenges in clinical recordings where optimal audio quality is not always guaranteed.

Furthermore, the performance degradation observed on the TORGO dataset when trained on SONIVA
data suggests the need for architectural improvements, including selective selective layer freezing
during fine-tuning, which may better handle grammatical errors and dysfluencies, or domain adapta-
tion techniques for improved cross-disorder generalisation. Future work can explore hyperparameter
optimisation, particularly focusing on the model’s decision-making process for token transcription
adjusting confidence thresholds. For specific disorders such as dementia, incorporating disorder-
specific linguistic features, such as measures of idea density or semantic coherence, into the model
architecture presents a possible avenue for enhancing performance. Additionally, to address the
main challenges of this work about TORGO’s short-form data, we could either merge SONIVA and
TORGO training data to handle diverse speech scenarios, or develop two separate specialised models
optimised for different utterance lengths.
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Yet, it is worth noting that our SONIVA database encompasses both long-form and short-form
speech, with patients also performing single-word tasks such as naming, reading, and repetition of
1-2 words. While this short-form data is currently undergoing labeling by our speech therapists, its
future integration will enable us to explore the dual-model approach using exclusively post-stroke
speech data, incorporating the necessary architectural improvements. This would allow us to address
the observed challenges while maintaining the advantages of training exclusively on SONIVA’s
disorder-specific speech patterns.

Finally, a continuous extensive clinical validation will be crucial to ensure that the model’s outputs
align with expert human transcriptions and provide meaningful insights for clinical assessment and
monitoring. Our interdisciplinary team, including speech-language pathologists and neurologists,
provides critical domain expertise guiding our model development and evaluation. This collaboration
ensures our technical advancements remain grounded in clinical relevance, potentially accelerating the
translation of these ASR systems into practical tools for speech and language disorder management.

7 Conclusion

This study demonstrates the potential of fine-tuning large-scale foundation models for post-stroke
speech recognition, achieving significant improvements in transcription accuracy across diverse
neurological pathologies affecting speech. While challenges persist in cross-disorder generalisation
and specific audio characteristics, our work represents a substantial advance toward robust, clinically
applicable universal ASR systems. The enhanced transcription accuracy could improve assessment
and monitoring of speech disorders, streamlining clinical workflows and enabling more personalised,
data-driven rehabilitation approaches. As we continue to refine and clinically validate these models,
MFM in AI-assisted speech analysis is poised to become an invaluable tool in managing speech and
language disorders, ultimately enhancing patient care and outcomes.
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A Appendix

Figure 3: Accent Map of the PwS database

Figure 4: Age Gender Distribution of the PwS database
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(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: No such risks present.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators and owners were properly credited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: No assets released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [No]

Justification: Information not fully disclosed yet due to anonymity, but part of the task specifics are
included in the Methods section.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

19

paperswithcode.com/datasets


Answer: [No]

Justification: All the risks were disclosed to the subjects during data collection, but not reported here,
and approved by the IRB, which is not disclosed due to anonymity. In the camera-ready version, this
information will be provided.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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