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Abstract

We demonstrate that carefully adjusting the tokenizer of the
Whisper speech recognition model significantly improves the
precision of word-level timestamps when applying dynamic
time warping to the decoder’s cross-attention scores. We fine-
tune the model to produce more verbatim speech transcriptions
and employ several techniques to increase robustness against
multiple speakers and background noise. These adjustments
achieve state-of-the-art performance on benchmarks for verba-
tim speech transcription, word segmentation, and the timed de-
tection of filler events, and can further mitigate transcription
hallucinations. The code is available open source.

Index Terms: speech recognition, word-level timestamp preci-
sion, disfluency detection

1. Introduction

Training deep-learning models on large-scale, weakly super-
vised speech datasets have proven very effective for extract-
ing rich representations, which perform well on versatile speech
processing tasks, such as automatic speech recognition (ASR)
[1, 2, 3] or speaker verification [4, 5]. Notably, Radford et al.
[6] trained Whisper, a sequence-to-sequence (Seq2Seq) trans-
former model [7] on 680,000 hours of weakly supervised speech
recognition data, demonstrating strong generalisation abilities
across domains, languages and datasets.

Recent works [8, 9] show that Whisper eliminates many
filler words, recurring utterances and other artifacts, which Lea
et al. [10] refer to as an intended transcription style, suitable
for contexts where clarity of intent is prioritized over detailed
speech analysis. This style, however, does not support the de-
tection, categorization, or analysis of disfluencies and there-
fore omits many clinically relevant aspects of speech. Verbatim
speech transcriptions capture all articulated utterances and can
efficiently be used for clinical assessment of speech [11, 12].
A speech disfluency occurs when there’s an interruption in the
normal rhythm of speech, typically manifesting as filled pauses,
word repetitions, or corrections. Filled pauses, beyond their lin-
guistic interest [13], provide insight into the language planning
process and are indicators of cognitive load [14, 15, 16]. There-
fore, analyzing the timing and frequency of disfluencies, partic-
ularly common fillers [17] such as 'uh’ and 'um’, offers valu-
able insights into a speaker’s cognitive processes. Many clini-
cally relevant biomarkers like speech rate or productive time ra-
tio [12] rely on time accurate detection of all aspects of speech.
Wagner et al. [12] show that fluency markers derived from tim-
ing information alone are sufficient to differentiate between four
different aphasia sub-types with an Fi-score of 81.6. Ge et al.
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[18] developed a filled pause detection dataset and a pipeline
combining ASR, a Voice Activity Detection (VAD) model, and
a classifier. Speech regions that remained untranscribed by the
ASR model are fed to a VAD model. The resulting voice-active
regions are then further classified to identify filled pause events.
This approach outperforms a convolutional recurrent neural net-
work (CRNN), which operates on log-mel spectograms with
128 bins computed from 1 second clips and a forced-aligner
based method called Gentle [19] combined with an acoustic
model. However, distinguishing between filler words and other
disfluency types such as false starts, remains challenging for
this uncontextualized system. In contrast, Whisper’s contextual
capabilities could offer improved speech analysis capabilities in
noisy scenarios.

Whisper does not provide word-level timestamps natively.
To this end, WhisperX [20] uses force-alignment between
Whisper’s transcriptions and a connectionist temporal classi-
fication (CTC) based phoneme model. This forced phoneme
alignment transfers the timing information from the CTC-based
Wav2Vec2.0 model [1] onto Whisper’s transcripts. Their VAD-
based cut and merge approach allows for segmenting audio ef-
ficiently before transcription, improving both speed and accu-
racy of the transcriptions. However, this method faces chal-
lenges, since discrepancies between model transcripts can fur-
ther degrade timestamp precision. Additionally, employing a
second model increases complexity and the VAD-based seg-
mentation approach, while efficient, lacks robustness in noisy
environments. Moreover, Wav2Vec2.0 tends to be less noise ro-
bust than Whisper, further degrading timestamps in noisy sce-
narios. Another approach that gained popularity for inferring
word-level timestamps uses Dynamic Time Warping(DTW) on
the cross-attention scores of the Whisper decoder [21, 22]. Fuar=
ther, in the context of disfluencies, Koenecke et al. [23] exam-
ined Whisper’s issues of producing hallucinated content when
transcribing speech from people with aphasia. Utilizing sam-
ples of AphasiaBank [24], they showed that roughly 1% of the
produced transcripts contained hallucinated content.

We show that by adjusting Whisper’s tokenizer and care-
fully fine-tuning Whisper on artificial perturbations for noise
robustness and single-speaker focus (i) the word-level times-
tamps can be improved significantly using a single model (ii)
the verbatim transcription style reaches state-of-the-art results
on more verbatim datasets such as the AMI Meeting Corpus
[25] or TED-LIUM [26], while maintaining the same accuracy
on datasets such as Librispeech [27] or Common Voice [28] (iii)
the model achieves near perfect filled pause detection accuracy
and (iv) we can substantially mitigate hallucinations. We call
the resulting model CrisperWhisper for its crisp timestamps and
are open-sourcing a synthetic dataset with accurate word-level
timestamps as well as the code for CrisperWhisper.
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2. CrisperWhisper
2.1. DTW for Timestamp Prediction
2.1.1. Intuition

Whisper employs an encoder-decoder structure, where the en-
coder incorporates multiple Transformer encoder blocks to pro-
cess audio. Initially, audio is re-sampled to 16 kHz and con-
verted into an 80-channel log-magnitude Mel spectrogram and
downsample via convolutions. The encoder operates on these
downsampled spectograms in 25 ms windows with a stride of
20 ms, meaning that each processed state represents 25 ms of
audio, which is shifted by 20ms steps. The Whisper large
model series uses a byte-level Byte Pair Encoding (BPE) text to-
kenizer [29], which produces the targets during training. Whis-
per’s Transformer decoder uses cross-attention layers. The re-
sulting cross-attention scores effectively reflect the decoder’s
focus on specific segments of the encoder output during the to-
ken prediction process. The intuition is that this focus is in-
dicative of the decoder’s strategy to prioritize encoder output
regions most relevant to the current token’s prediction. The goal
is therefore to use the network’s cross attention scores to assess
which 25 ms audio frames were important to decode the current
token and use the aggregate of these frames as a timestamp [22].

2.1.2. DTW and Cost Matrix Construction

We employ the DTW [30] algorithm to find the optimal cost,
monotonic and continuous alignment between two sequences,
requiring a cost matrix to measure the alignment expense be-
tween elements of these sequences. In our case these sequences
are the encoder outputs E = {e1, e, ..., e, } representing the
encoded acoustic signal and the sequence of decoder token pre-
dictions D = {d1,da2,...,dmn}. Given a set of suitable atten-
tion heads from the decoder H = {h1, ha, . .., h; } the cost ma-
trix is defined as follows. Each of the d; is associated with a set
of cross-attention vectors A; = {ai1, ai2, - . ., @y }, where a;i
denotes the attention score from the k-th attention head when
decoding the i-th token, with each a;, € R™. We average these
vectors (A; = % 22:1 a;r) and normalize them to construct
the cost matrix C"

Crucially and in contrast to [22], we remove all tokens corre-
sponding to punctuation from D before constructing the cost
matrix since punctuation has no clear acoustic representation
and should therefore not be given a timestamp in the alignment.

2.2. Retokenization

Taking a closer look at the tokens in the vocabulary of Whis-
per, we identify that many tokens are prefixed with a space.
When applying the BPE algorithm to all Common Voice14 tran-
scripts [28] using Whisper’s vocabulary, we observe that only
13% of spaces in the original transcripts are mapped to the ex-
plicit space token. For instance, tokenizing the sentence ’This
is a long pause.” with Whisper’s original tokenizer results in
['This’, > is’, > a’, * long’, * pause’, ’.’], where spaces are in-
cluded at the start of tokens rather than as standalone entities.
This tokenization approach impacts the application of DTW for
aligning audio segments to tokens, as it inadvertently integrates

pauses at the beginning of tokens into their timings. We observe
that spaces are exclusively found at the beginning of tokens but
never at the end or in the middle. Therefore, we propose to
simply strip all tokens in the vocabulary of spaces, except the
space token itself, and keep only the unique tokens. We adjust
the merges in the tokenizer to be congruent with this reduced
vocabulary. This simple adjustment ensures that all spaces will
be tokenized individually, theoretically enabling the DTW algo-
rithm to detect pauses between words. Retokenizing our exam-
ple with the adjustment yields [*This’,”’,’is’,” *,’a’,” ’, ’long’,
> 7, ’pause’, *.’]. The difference between the DTW paths on
the cross attention scores of Whisper’s large-v2 version with its
original tokenizer can be found in Figure 1 with the fine-tuned
CrisperWhisper model and its adjusted tokenizer in Figure 2,
visualising the close alignment with the ground truth timings.
We further re-purpose tokens for 'uh’ and 'um’ to canonically
transcribe filled pause events.

Whisper TS DTW

<|0.00|>
This

Time

Figure 1: Example of a DTW path through the cross-attention
weights matrix of Whisper large-v2 as in [22]. White lines rep-
resent the ground truth.
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Figure 2: Example of a DTW path through the cross-attention
weights matrix after CrisperWhisper retokenization. ~White
lines represent the ground truth.

2.3. Pause Heuristics

To address the overestimation of pause durations by the DTW
algorithm due to non-distinct attentions, we introduced a heuris-
tic that splits the duration of pauses evenly between the preced-
ing and subsequent words, setting a cap at 160 ms. This cap
is based on the observed distribution of pause durations, effec-
tively distinguishing between insubstantial "artifact” pauses and
meaningful speech pauses. Durations surpassing this cap are
identified and timed as genuine pauses, ensuring a more accu-
rate representation of speech rhythm.



3. Training
3.1. Datasets

Our training dataset consists of two spontaneous speech datasets
with a verbatim transcription style, namely the AMI Meeting
Corpus [25] and a specially adapted version of the Podcast-
Fillers Corpus [18], along with a cleaned segment of the Com-
monVoicel4 Corpus [28] English subset. Additionally, we use
two noise datasets, FSDnoisy18k [31] and AudioSet [32], to
make the model more noise invariant. Specifically, for the AMI
dataset, we utilize the training split of the AMI-IHM subset,
which contains approximately 29,000 meeting recording clips
with canonical transcriptions of filler events. Moreover, we
utilize a subset of the PodcastFillers dataset, which comprises
approximately 35,000 instances of filler words such as 'uh’ or
’um’ used in podcast episodes. The dataset includes timings
and automatically generated timed transcriptions for the pod-
cast episodes. Our process for reformatting this dataset involves
the following steps:

1. Sampling Context: For each timed filler word in the train-
ing set, we generate three distinct audio segments by choos-
ing varying context lengths ranging from 1 to 5 seconds from
both before and after the filler. This selection is made with
care to avoid including partial words on both ends, slightly
adjusting the sampled context length when needed to include
partial words fully. This expands our dataset to approxi-
mately 105,000 samples.

2. Cut Audio Clips with Aligned Transcripts: The chosen
audio segments, along with their aligned transcripts, are ex-
tracted. Filler words are explicitly marked as either "uh’ or
’um’ in their respective positions within the transcripts.

3. Transcript Correction: To address inaccuracies in punctua-
tion and capitalization within the original transcripts, we uti-
lized GPT-4 [33] after observing that the original transcript
quality adversely affected Whisper’s ability to correctly ap-
ply punctuation.

For CommonVoicel4, we employed Whisper’s medium
model on the English train subset to identify and remove sam-
ples likely not transcribed verbatim. Any sample with a charac-
ter error rate exceeding 3% compared to its label was excluded.

3.2. Implementation Details

To deploy CrisperWhisper as a comprehensive speech analysis
model in practical applications, it is essential that the model is
trained to prioritize the primary speaker’s voice and to be gen-
erally noise robust. To this end we use the noisy/overlapped
speech simulation proposed in WavLM [2] during fine-tuning
from the whisper-large-v2 checkpoint [34]. As noise data, we
use FSDnoisy18k, AudioSet, random Gaussian noise and ran-
dom speech samples drawn from the dataset. To counteract
hallucinations, we introduce noise-only samples (containing no
speech) with empty transcriptions in 1% of the training samples.
The training process spans 6,000 steps with a batch size of 256,
utilizing a 0.00005 learning rate, a linear learning rate decay
with an 800-step warmup phase, amounting to approximately 2
epochs.

4. Evaluation

4.1. Datasets

AMI Meeting Corpus: We use the official test split on the
AMI-IHM subset with approximately 11,500 samples. AMI

disfluency subset: The AMI Meeting Corpus contains filler
words transcribed in a canonical way. We extend the filler words
by using GPT-4 to label repetitions, false starts and revisions on
the transcripts of the AMI-IHM test set. Our disfluency subset
consists of all files and transcripts that contain at least one of
the labeled disfluencies and contain more than 5 words, which
are approximately 4,000 samples. PodcastFillers Corpus: We
use the same approach as described in Section 3.1 for creat-
ing annotated filler samples on the official test subset, choosing
1 second of context before and after each filler, which results
in approximately 5,000 samples. Synthetic dataset: To com-
pare word-level timestamp accuracy, we created 200 samples
of spontaneous speech transcripts with GPT-4, which contain
natural pauses in sentences, indicated by ’..." in the transcripts.
These transcripts were subsequently synthesized with Eleven-
Labs https://www.elevenlabs.io, creating naturally
sounding spontaneous speech samples for which timestamps
were manually annotated. AphasiaBank=Corpus:=Aphasia=
Bank [24] comprises a collection of interviews between clin-
icians and subjects afflicted with aphasia, as well as healthy
control subjects. We are using the same files that Koenecke et
al. [23] have identified to cause hallucinated content when tran-
scribednwithrWhisperilarge=v2: TED-LIUM: We use the test
split of TED-LIUM Release 3 [26], using the segmented man-
ual test transcripts included in the release. LibriSpeech: We
use both of the popular LibriSpeech [27] ’test clean’ and ’test
other’ splits for evaluation.

4.2. Metrics

To evaluate transcription accuracy, we use word error rate
(WER) and insertion error rate (IER) to quantify word omis-
sions. For timing accuracy, we use the Fi-score, which is well
defined via basic confusion matrix terminology. In this con-
text, we define a true positive as a predicted word that both
overlaps temporally with a reference word and matches its con-
tent. Each reference word can only contribute to a single true
positive. A false positive is defined as a predicted word that
does not have temporal overlap or content match with any ref-
erence word. Conversely, a false negative is a reference word
that does not have temporal overlap or content match with any
predicted word. Temporal overlap occurs when the start (onset)
and end (offset) timestamps of a prediction fall within a prede-
fined collar of the corresponding timestamps in the reference.
Additionally, we evaluate localization accuracy using the mean
Intersection over Union (mIoU) metric, which compares each
predicted word against the reference for both string match and
temporal overlap, calculating the IoU based on timestamps, or
assigning a score of 0 if no match exists. The highest IoU score
for each word represents its IoU, ensuring each word is matched
only once.

4.3. Results

In the following, we are referring to Whisper’s large-v2 model
with the DTW implementation of [22] as WhisperT, the de-
fault configuration of WhisperX [20] with an underlying Whis-
per large-v2 and Wav2vec2.0 alignment model as WhisperX.

4.3.1. Word Segmentation Performance

Figure 3a shows how CrisperWhisper outperforms previous
state-of-the-art models using different collar values on the test
set of the AMI Corpus. We ensure that the normalized tran-
scripts of our prediction, the normalized reference and the nor-
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malized predictions of the other models coincide completely.
This is to account for the fact that our more verbatim approach
gives us an unfair advantage and we want to ensure that we eval-
uate the localization performance separately from the transcrip-
tion accuracy. Figure 3b depicts the segmentation performance
using different collar values on the clean, synthetic dataset men-
tioned in Section 4.1 with manually annotated timestamps.

AMI matching subset Synthetic dataset
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(a) Matching AMI subset (b) Synthetic dataset
Figure 3: Word segmentation performance showing the F;-
score for different collar values.

We further evaluate the noise robustness of our model by
adding random secondary voice samples from the LibriSpeech
"test clean’ subset, white noise, and random noise samples from
FSDnoisy18k with a signal-to-noise ratio of 1:5 to the syn-
thetic samples. As detailed in Table 1, CrisperWhisper demon-
strates superior robustness in terms of mloU and F;-score un-
der noisy conditions. In contrast, WhisperX exhibits a more
significant performance decline than WhisperT, attributable to
Wav2Vec2.0’s lesser noise resilience. Notably, CrisperWhisper
achieves markedly higher mIoU metrics and F;-scores, particu-
larly with narrower collars, underscoring its enhanced accuracy
in timestamping pauses compared to other evaluated methods.

Table 1: Noise robustness of word segmentation performance
on synthetic data using a collar of 0.2 seconds.

Model Synthetic
Fit mloUT F; 1T mloU?t

WhisperT [34] 74.7 51.4 68.3 49.8
WhisperX [20] 76.7 61.5 59.0 443

CrisperWhisper ~ 84.7 63.4 79.5 60.5

Synthetic noisy

4.3.2. Disfluency Segmentation Performance

For evaluating the filler word detection and segmentation per-
formance, we transcribe the audio examples of our adjusted test
split of the Podcast-Fillers Corpus as described in Section 4
with CrisperWhisper and calculated the Fi-scores as described
in Section 4.2 for various collar values. The results can be seen
in Figure 4a with the reported F}-score eventually exceeding
the acoustic model reported in [18], although the segmenta-
tion is worse for collar values smaller than 0.5 seconds. Since
our model transcribes verbatim, we also detect and segment
other disfluency types, such as repetitions, false starts or partial
words. Figure 4b shows the localization performance on disflu-
ent speech samples of the AMI disfluency subset described in
Section 4.1.

Filler words localization performance AMI disfluency dataset
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(a) PodcastFillers Dataset (b) AMI disfluent subset

Figure 4: Disfluency Localization Performance

4.3.3. Verbatim Transcription Performance

Table 2 shows the significantly improved ASR performance on
spontaneous speech datasets with more verbatim transcriptions.
We have further validated that CrisperWhisper’s transcription
accuracy does not degrade on intended speech datasets. All
transcriptions of the ’test other’ and ’test clean’ subsets of the
LibriSpeech Corpus or the test split of CommonVoicel4 lie
within 0.01 WER of the original Whisper large-v2 model.

Table 2: ASR performance on verbatim datasets.

Model AMI TED-LIUM
WER| IER| WER| IER]
Whisper [34] 1682 1177 401  3.08

CrisperWhisper 9.72 2.26 3.26 0.75

4.3.4. Hallucinations

To validate hallucination mitigation, we use the same audio
files from AphasiaBank as analyzed by Koenecke et al. [23].
CrisperWhisper does not produce harmful hallucinations on any
of the identified speech recordings, but produces repetitive tran-
scriptionrloopsrontl0recordingsi Since CrisperWhisper is pro-
ducing accurate word-level timestamps, we are simply remov-
ing tokens with a duration below 50 ms, effectively eliminating
this type of artefact of hallucinating speech during inactivate
speech regions.

5. Conclusion

We proposed CrisperWhisper, a robust end-to-end speech tran-
scription model producing accurate word-level timestamps in a
verbatim, single speaker focused transcription style. We trace
the problem of unsharp timestamps around disfluencies and
pauses back to Whisper’s tokenizer and present a strategy to
alleviate this problem. One weakness of our approach is the ar-
bitrary selection of attention heads used for alignment. In the
near future, we want to investigate the verbatim transcription
and segmentation capabilities for quantifying speech deficits,
scale the approach with more high quality verbatim data and
explore how these capabilities can be transferred to other lan-
guages.
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