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Purpose: This study examines how personal, clinical, and word-level features 
explain paraphasias when using machine learning–based error analysis on the 
narratives of people with aphasia (PWA). 
Method: We used AphasiaBank as the source of narrative transcript data for 236 
PWA. We tested machine learning classification algorithms including decision trees 
and random forests on the utterances of PWA, including nonparaphasic words and 
intended words when paraphasias were produced. We classified target words as 
paraphasic or nonparaphasic based on PWA’s age; aphasia  severity, duration,  and  
type; presence of apraxia or dysarthria; and word-level features including part of 
speech, word frequency, imageability, syllable count, and location in the utterance. 
We measured the models’ predictive accuracy across classification thresholds on 
held-out test sets, and we used feature analysis to compare feature importance. 
Results: At the word level, our random forest model achieved an area under curve 
(AUC) of 0.896. We found a sensitivity of 0.821 for semantic paraphasias, 0.764 
for phonemic paraphasias, and 0.872 for neologistic paraphasias. The most salient 
features, in order of importance, were word frequency, imageability, part of 
speech, age, severity, and syllable count, followed by aphasia duration, location of 
word, presence of apraxia, type of aphasia (e.g., fluent), and presence of dysar-
thria. Our random forest model that included information about surrounding words 
achieved AUC scores ranging from 0.881 to 0.899. Additionally, we developed a 
model that was trained on surrounding words and their respective features, but 
not given the actual error word. The best model achieved an AUC of 0.745. 
Conclusions: Machine learning can aid in the explanation of paraphasias. In 
this study, we analyzed word- and person-level features and highlighted the 
nonrandom nature of paraphasic productions. Furthermore, this lays the 
groundwork for developing machine learning models with clinical applications at 
the various stages of treatment of PWA. 
Supplemental Material: https://doi.org/10.23641/asha.28474172 
Aphasia is an acquired communication disorder that 
results from damage or loss to the cortical and/or subcor-
tical areas of the brain responsible for language (H. Le 
& Lui, 2023). Typically, there is damage in the left 
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hemisphere due to its critical role in language (Brady 
et al., 2012). Specifically, damage to the perisylvian 
network for language can lead to impairments in expres-
sive and receptive language skills (Grossman & Irwin, 
2018). The most common cause for aphasia is a type of 
cerebrovascular accident called ischemic stroke (Fergadiotis 
et al., 2019). Aphasia can also be caused by traumatic 
brain injury, tumors, or progressive disorders such as 
Alzheimer’s and hemorrhagic strokes (Grochmal-Bach 
et al., 2009). Of people that experience a cerebrovascular 
accident, about one third will become people with aphasia 
(PWA; Brady et al., 2012). Overall, this is equivalent 
to over 1 million people in the United States who
• Copyright © 2025 American Speech-Language-Hearing Association 451
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SIG 2 Neurogenic Communication Disorders
have aphasia and about 180,000 new cases per year 
(National Institute on Deafness and Other Communica-
tion Disorders, 2017). 

Characteristics and Classification 

The symptoms that PWA experience can vary from 
mild impairments at the word level to larger language def-
icits according to lesion site and size. They may experience 
these impairments in language components such as seman-
tics, phonology, morphology, and/or syntax (H. Le & Lui, 
2023). Aphasia subtypes can be used to categorize individ-
uals based on their patterns of impairment across the lan-
guage modalities. For example, researchers may dichoto-
mize aphasia into nonfluent and fluent aphasia, based on 
their verbal output (Hallowell, 2017). Nonfluent aphasias 
(e.g., Broca’s aphasia, global aphasia, and transcortical 
motor aphasia) are characterized by verbal output that is 
shorter, more effortful, and often agrammatic in nature. 
Fluent aphasias (e.g., Wernicke’s aphasia, transcortical 
sensory aphasia, anomic aphasia, and conduction aphasia) 
are characterized by effortless verbal output without hesi-
tations but may include errors or limited meaning. For 
this study, we analyzed subjects based on their fluent or 
nonfluent aphasia classification, without reference to sub-
categories (e.g., Broca’s or Wernicke’s aphasia). 

Paraphasias 

Paraphasias are substitution-based, word-level errors 
that are characteristic of PWA (Dalton et al., 2018). In 
general, these word-level errors are related to a break-
down in lexical access, related to semantic retrieval, pho-
nological retrieval, or the interaction of the two (Schwartz 
et al., 2006). Although there are several classification 
schemes for paraphasias that can aim to categorize types 
of paraphasias based on the type of error (i.e., phonemic 
or semantic) or its distance from a target word, a widely 
used categorization system (that is used by the Aphasia-
Bank) includes semantic, phonemic, and neologistic para-
phasias. Respectively, a person with aphasia may substi-
tute a target word (e.g., pumpkin) based on a semantic 
error (e.g., apple), a phonemic error (e.g., the nonreal 
word “tumpkin” or the real word “bumpkin”), or a pho-
nologically unrelated neologistic error (e.g., perka), which 
can all impact the listener’s comprehension of the intended 
message. Previous studies found evidence of a relationship 
between external factors, such as the frequency of a word 
in the English language, and resulting deficits in naming 
accuracy (Butterworth et al., 1984; Goodglass et al., 
1969). Typically, paraphasia studies examine factors such 
as part of speech, imageability, and frequency. For exam-
ple, Nickels and Howard (1995) set out to explore the 
effects that psycholinguistic factors played in word-finding 
• •452 Perspectives of the ASHA Special Interest Groups Vol. 10 451
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difficulties. Out of the factors they studied, including fre-
quency, word length, and age of acquisition, they found 
separate correlations between imageability, the ease with 
which a word can be pictured, and age of acquisition in 
errors of people with fluent and nonfluent aphasia. These 
findings were confirmed with later studies that demon-
strated PWA perceive words with higher imageability as 
easier to produce, and across tasks and types, and are 
more likely to use verbs and nouns with “higher than 
average” imageability values (H. Bird et al., 2003, p. 6). 
In our analysis, we build upon these foundational features 
(part of speech, imageability, and frequency) by incorpo-
rating additional features, specifically word length and 
sentence position. We theorize that word length could 
serve as an informal measure of conceptual complexity 
(Lewis & Frank, 2016), while position in a sentence may 
reveal potential patterns in error production. Our ratio-
nale for including these new features is based on the 
hypothesis that error production is influenced by a simul-
taneous interaction of various psycholinguistic variables. 
For example, despite scanty evidence about the effects of 
psycholinguistic variables, we theorize word length could 
serve as an informal measure of conceptual complexity 
(Lewis & Frank, 2016) and position in a sentence as a 
way of describing potential patterns of error productions. 

The evidence described above has largely been gener-
ated from studies of language production in confrontation 
naming tasks. Growing research has investigated the role of 
paraphasias in narratives (Fromm et al., 2017; MacWhinney 
et al., 2011). Part of the rationale for using narrative tasks is 
that they assess real-world performance in a way that iso-
lated confrontation naming tasks cannot by eliciting typically 
longer and more diverse speech samples. 

Although performance on confrontation tasks is 
related to discourse informativeness—defined as the general 
extent to which spoken or written discourse provides rele-
vant, useful, and clear information to its audience—on nar-
rative discourse tasks (Fergadiotis et al., 2019), it only 
accounts for about 62% of the variance in discourse infor-
mativeness. This suggests that narrative discourse relies on 
and can provide different information about linguistic skills. 

In addition to an increase in language freedom in 
participants, narrative tasks allow for context to researchers 
(Dillow, 2013). In other words, while a confrontation nam-
ing task requires an exact response, a narrative task pre-
sents as an open-ended question without a required correct 
response. In this way, participants can speak with the 
vocabulary, grammar, fluency, and pronunciation that 
more closely match their typical language while still giving 
researchers a contextualized response, which allows for 
more successful identification of target words in the pres-
ence of errored productions.
•–462 April 2025
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Aphasia Research and Machine Learning 

Even with online repositories of language samples 
(e.g., MacWhinney et al., 2011), the process of analyzing the 
narratives of PWA can be laborious and time-consuming. 
As a result, in the past few years, ground-breaking research 
has been conducted using both transcription and coding-
based tools to aid in the process of error analysis as it 
relates to discourse production. For example, Adams et al. 
(2017) used natural language models to train a machine 
learning system to automatically classify errors as phonemic 
or neologistic based on known target words. They accom-
plished this by training their system to predict the possible 
target words that a speaker may be trying to say based on 
their retelling of the Cinderella story. In a similar manner, 
D. Le et al. (2018) analyzed the discourse of participants in 
the AphasiaBank repository and found that 12% of errors 
in samples fit the criteria for paraphasias. They were then 
able to automatically classify phonemic and neologistic 
paraphasias from transcripts with known and unknown tar-
get words. 

Despite the access to databases with large speech 
samples of PWA and the recent use of machine learning 
models to aid automatic diagnosis and discourse analysis 
in the field of aphasiology (Järvelin & Juhola, 2011; Jothi 
& Mamatha, 2020), no studies to date have produced a 
model that can classify all types and evaluate which 
person-level and psycholinguistic factors influence the pro-
duction of paraphasias. As a result, the purpose of this 
study is to address the following research question: How 
do person-level features (e.g., age) and psycholinguistic 
features of both target and surrounding words (e.g., word 
frequency, part of speech) explain paraphasic productions 
when incorporated into machine learning models? The 
findings of study help us to better understand the contrib-
utors to paraphasic production in naturalistic communica-
tion settings, which can support more targeted treatment. 
Additionally, this study provides insight into the use of 
machine learning models in the study of aphasia and 
implications for therapeutic applications. 
Method 

Source of Data 

All data came from AphasiaBank (MacWhinney 
et al., 2011), a repository commonly used by researchers 
to study aphasia. It is a large repository of transcribed 
audio and video recordings of PWA by trained inter-
viewers. All recordings were collected in a span of 9 years 
by various research groups using a standardized protocol 
of questions and stimuli. We used subdatabases in 
Zav
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English that were collected using the AphasiaBank protocol 
(MacWhinney et al., 2011, p. 3) and contain a transcription 
of the interview. Within the interview, participants were 
asked to do various free speech and semispontaneous 
tasks, including retelling the story of Cinderella. We 
focused on the latter by using the subset of each tran-
script that contained audio and transcribed retellings of 
the Cinderella story. This type of narrative allows for 
longer, more natural samples of communication while also 
providing some context to researchers on the messages 
being conveyed, which is highly relevant when analyzing 
errors and determining intended target words (Dillow, 
2013). AphasiaBank also contains participants’ demographic 
and clinical features, which we include in the analyses. 

Transcripts 
AphasiaBank collaborators segment each utterance 

of a person with aphasia using standard guidelines of syn-
tax, intonation, pauses, and semantics (MacWhinney 
et al., 2000). This criterion leads to numbered, time-
stamped utterances in the Codes for the Human Analysis 
of Transcripts (CHAT) transcription format. The format 
includes labels of utterance features (e.g., word repetitions, 
revisions, fillers, gestures, sound fragments, and unintelli-
gible output). In CHAT, licensed speech-language pathol-
ogists marked all errors at the word level with an asterisk 
[*] and a letter specifying the type of error (phonological, 
semantic, neologism, morphological, and disfluencies). 
Further letters indicate the subtype of error, such as [*n:k] 
for an error categorized as neologistic with known target 
word, versus [*n:uk] for an error categorized as neologistic 
with an unknown target word. For the purposes of this 
study, we consider errors those that were marked as errors 
followed by the phonological, semantic, and/or neologistic 
symbols, regardless of the subtype. 

Furthermore, for nonwords, including errors where 
the intended word is not known (and later imputed), the 
utterances are transcribed using the standardized Interna-
tional Phonetic Alphabet (IPA). In addition, we utilized 
participants’ transcribed narratives in the CHAT format 
to extract coded features for the machine learning models 
(e.g., part of speech, position in a sentence, and word 
length). Transcripts were converted from the CHAT for-
mat to an XML (extensible markup language) format. We 
excluded utterances with untranscribed segments, and we 
removed word fragments from utterances. 

Subjects 
All subjects in this study are PWA who are at least 

18 years old and resided in the United States at the time of 
the interview. Participants were excluded if they did not 
have aphasia as categorized by the Western Aphasia 
Battery–Revised (WAB-R), if they spoke any language
aleta et al.: Machine Learning to Explain Errors in Narratives 453
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Table 1. Demographic information of people with aphasia (N = 235).  

Information M in years (SD) 

Age (at time of test)a 61.7 years (4.0) 

Education 15.5 years (2.8) 

% n 
Sex Female 41.28 97 

Male 58.72 138 

Race White 83.40 196 

African American 13.20 31 

Other/not reported 3.40 8 

a Age is the only demographic variable included in the models. 
Other demographic variables are provided for the purpose of 
describing the sample.
other than English, and if they did not know the Cinderella 
story. These criteria resulted in narratives from 236 subjects 
being included in the analyses. 

Measures 

Independent Variables 
We gathered information on word-level features to 

help with the prediction and identification of each type 
of error. Word-level features included imageability, fre-
quency, word length, part of speech, and position in a 
sentence for each word. Specifically, we assign features 
to nonparaphasic words and the target words of para-
phasias. In combination, these features were chosen 
because they have demonstrated a relationship with word 
productions in PWA (Howard et al., 2008). For exam-
ple, the frequency of a word is a strong predictor for 
how fast a person with aphasia can utter the word in a 
naming task. 

We utilized the Medical Research Council Psycho-
linguistic Database (Coltheart, 1981) to assign values for 
psycholinguistic features of the words in the included 
utterances. The MRC database was developed out of a 
need to provide researchers with word-level characteristics 
for psycholinguistic experiments and contains smaller 
databases for specific features. For example, we used the 
Coltheart (1981) database to assign imageability to the 
included utterances. Imageability ratings in the subdata-
base were derived from previous sets of norms (Gilhooly 
& Logie, 1980; Paivio et al., 1968; Toglia & Battig, 1978) 
and yield subjective ratings between the values of 100 and 
700 (from least to most imageable). Frequency values 
were derived from the Python library wordfreq, a tool that 
unifies several open web-based sources of English text to 
provide word usage frequency (Speer, 2022). Word length 
is an objective measure that was derived from each word’s 
syllable count, as obtained by converting grapheme length 
to syllable count using the g2pE module in Python (Park 
& Kim, 2019). The part of speech and absolute position 
within the sentence are both derived from the Aphasia-
Bank transcripts by the coding provided and our protocol, 
respectively. 

Content words are those with substantive meaning 
relative to the grammatical structure of the sentence. Typi-
cally, they include nouns, verbs, adjectives, and adverbs. 
For this study, we included errors regardless of part of 
speech. Although paraphasia analyses are historically done 
with content words, errors at the narrative level can 
include functors as well (e.g., pronouns; Arslan et al., 
2021). Thus, in the present study, we do not restrict analy-
sis to content words only, as that would limit our exami-
nation of the person-level and word-level factors that con-
tribute to paraphasic productions. 
• •454 Perspectives of the ASHA Special Interest Groups Vol. 10 451
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At the person level, we incorporated clinical fea-
tures, including type (i.e., fluent or nonfluent) and severity 
of aphasia (as measured by the WAB-R Aphasia Quo-
tient), time postonset, and years of therapy prior to the 
day of testing. To account for language production differ-
ences by age (Marini et al., 2005) and because age is 
related to likelihood of aphasia poststroke, as well as type 
of aphasia (Ellis & Urban, 2016), we also included age as 
a variable in the model. A summary of demographic and 
clinical information about the subjects included in our 
sample is included in the results (see Tables 1 and 2). 

Dependent Variables 
The dependent variable of interest was the presence 

of a paraphasic error. Specifically, we looked at the suc-
cess with which our model was able to determine the pres-
ence or absence of a paraphasic error based on the word-
level and person-level features described above. 

Procedure 

We first parsed the data from the CHAT transcripts 
for each participant. AphasiaBank provided the Chatter 
program (MacWhinney et al., 2011) needed to convert the 
data into an XML format. This separated the data into 
tags, which could then be used to separate the intended 
narrative from the rest of the data. We included all the 
utterances during the retelling of the Cinderella story. We 
filtered utterances containing untranscribed speech, leaving 
the final corpus of text. For word errors that had a likely 
intended target word attached, the intended target word 
replaced the word error in the analysis. This allowed us to 
incorporate the features of the intended word (e.g., fre-
quency of the intended word) to help determine the role 
of that feature in the likelihood of error production. 

Imputation Strategy 
Not every word that contains an error includes the 

intended target. For example, neologistic errors that were
•–462 April 2025
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Table 2. Diagnosis-related information of people with aphasia 
(N = 235). 

Information M (SD) 

Severity 69.1 WAB score (17.9) 

Time postonset 5.4 years (5.0) 

Treatment duration 3.3 years (4.0) 

% n 
Etiology Stroke 90.8 213 

Other 3.8 9 

Unknown/NA 5.5 13 

Comorbidity Apraxia 31.9 75 

Dysarthria 8.5 20 

Types of aphasia Broca 34 79 

Anomic 26 60 

Conductive 12 298 

Wernicke 6 15 

Global 2 6 

Other/NA 20 46 

Fluency Fluent 44 104 

Nonfluent 45 105 

Unknown 11 26 

Note. WAB = Western Aphasia Battery; NA = not applicable. 
not recognized by the researchers were then left in an IPA 
format. To capture these words in our data, we developed 
a protocol for manually determining the most likely 
intended target word based on the combination of audio, 
visual, and transcription data provided. We first identified 
utterances that contained at least five words (excluding 
fragments and fillers) and included the error within that 
total count. We then found the phonetic transcript for the 
utterance and listened to and watched the three lines of 
utterances that preceded and followed the utterance con-
taining the error. Two researchers (R.Z. and L.W.) then 
independently recorded their first and second impressions 
of the target word for the neologistic error and the corre-
sponding parts of speech. Initial interrater reliability was 
at 55%, rising to 98% consensus with discussion.

In addition to the missing replacement words, some of 
the words are missing a part of speech label. For the 14.6% 
of words where the part of speech was missing, we replaced 
values using a trained part of speech tagger. We used the 
openly available Natural Language Toolkit Python library 
(nltk), which provides a part of speech tagging model trained 
on large bodies of labeled English sentences to predict the 
part of speech of words in the context of a sentence (S. Bird 
et al., 2009). The predictions are 69.1% accurate when pre-
dicting the part of speech of the labeled words from the data 
set. The predicted part of speech tags was used only for 
words missing a part of speech in the transcript. 

For the 29.2% of words where the imageability was not 
available in the Medical Research Council Psycholinguistic 
Zav
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Database (Coltheart, 1981), a linear regression imputation 
model was trained to predict the imageability of the word. 
First, each word with an assigned imageability in the 
database is translated to a vector using a word2vec model 
implemented in GenSim. This model is one that was pre-
viously trained on the Google News data set, a popular 
standard for word2vec models in the field of natural lan-
guage processing (Mikolov et al., 2013). The linear regres-
sion model is then trained on each word’s word vectors to 
predict that word’s imageability. This approach is based 
on existing literature that shows that imageability can be 
explained in part by these word embeddings (e.g., Ljubešić 
et al., 2018; Matsuhira et al., 2020). The models on aver-
age achieve an R2 score of .630 on training samples and 
.580 on unseen test samples after 100 rounds of fivefold 
cross validation. 

There were 1.5% of words that had no associated 
word vector. These words were imputed with the mean 
imageability After the imputation was complete, the data 
set includes 56,419 words across 7,719 utterances. 

Supervised Machine Learning 
Classification Models 

Following imputation, we utilized a variety of super-
vised machine learning classification models. Supervised 
machine learning models are trained using data samples 
that include input features and an output label. A classifi-
cation model specifically assigns a class label to the data 
(e.g., a certain word is an adjective). Our models were 
designed to determine the likelihood that an intended tar-
get word results in a paraphasia using person-level and 
word-level features. Specifically, our person-level features 
included age, aphasia severity (very severe, severe, moder-
ate, mild), aphasia duration, aphasia type (fluent or non-
fluent), and presence of apraxia or dysarthria. Our word-
level features included part of speech, word frequency, 
imageability, syllable count, and location within the utter-
ance. For our word-level models, the word-level features 
of only the target word were included. For contextual 
models, the same word-level features of the surrounding 
words were included in the model as well. 

We focused on models that balance predictive power 
with interpretability. A model with high predictive power 
can represent more complex mathematical relationships 
between input features and predicted class. An interpret-
able model is one that produces an understandable con-
nection between the features and the output. For example, 
a deep learning model has high predictive power, but it is 
currently very difficult to produce meaningful or clinically 
relevant interpretations of these models. A logistic regres-
sion algorithm is strongly interpretable, but it cannot rep-
resent feature interactions or nonlinear relationships, so it 
has weak predictive power.
aleta et al.: Machine Learning to Explain Errors in Narratives 455
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One of the more interpretable classifier models is 
called a decision tree (Charbuty & Abdulazeez, 2021). A 
decision tree model consists of a set of decision nodes and 
a set of prediction nodes. Each decision node contains a 
simple comparison function of one of the features. For 
instance, if one of the features is “age,” a node may con-
tain the comparison “age > 50.” The nodes are connected 
such that each outcome of the comparison of a node leads 
to another node. Decision nodes at the end of the tree 
lead to prediction nodes, which contain the model’s pre-
diction for the input. The first decision node in a tree is 
the root of the decision tree. When the input features are 
provided to the model for prediction, the root decision 
node comparison is checked, and then a path is taken 
down the tree to a prediction node. 

We use a binary decision tree so that each decision 
node has exactly two paths out, and we use a limit to the 
maximum depth of the tree to a path length of eight deci-
sion nodes, which improves the generalization of the 
model. The tree can be interpreted by observing the deci-
sion nodes as a sample takes a path through the tree. A 
measure of the importance of each feature can be calcu-
lated using Gini importance, an algorithm that performs 
an average of the decrease in uncertainty that results from 
samples passing through a decision node weighted by how 
many samples pass through the node, attributing each 
score to the feature being compared at the node. 

Decision trees are highly interpretable models, but 
there are many techniques that generalize to stronger pre-
dictive models. Random forests are an ensemble method, 
meaning they are composed of smaller models. Random 
forests train multiple individual decision tree models and 
use the plurality vote of the decision trees for a prediction 
(Ho, 1995). To promote a diverse view of the set of fea-
tures, the trees are constrained to use a randomly selected 
subset of the features (we used a subset with size equal to 
the square root of the total feature set). To promote a 
diverse view of the data set, the random forest utilizes 
• •
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bagging during training, a process that samples the data set 
into multiple randomized overlapping subsets to improve 
the ensemble (Brieman, 2001). The combination of decision 
trees results in a model that generalizes better to new sam-
ples. However, the model can no longer be interpreted by 
simply observing a single path through a tree. It is still pos-
sible to estimate the importance of a feature using the aver-
age Gini index across all of the decision trees. 

Training 
In all models, 80% of the data were used for training 

purposes, meaning the decision trees were given all informa-
tion available for those utterances as well as which instances 
were errors. The final set of features provided includes per-
sonal, diagnostic, and word-level features. The result is then 
a model that automatically determines the likelihood of a 
word being a paraphasia in each utterance of the narratives 
of PWA. The remaining 20% of the data were used for test-
ing the model. All of the input features were provided just 
like in the training set, but now the trained classifier model 
uses the information it has learned about the relationship 
between input features and output classification to determine 
whether a word in the new data set is likely to be in error. 

We utilized a fivefold analysis, meaning that the train-
ing and testing process used five randomized folds, or sub-
sets, of the data, with a different testing data set each time 
(see Figure 1 for an example of the cross validation of this 
study). This yielded random forest models with a different 
training and testing set each. This process was repeated for 
100 different randomized folds for a total of 500 models. 
Results 

Participant Data 

Of the individual transcripts of Cinderella retellings 
provided by the AphasiaBank, the transcripts of 236
•–462 April 2025
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PWA met eligibility criteria. However, one individual’s 
transcripts included only unusable utterances, so the final 
number of PWA included in the analyses was 235. Of 
these individuals, 97 were women and 138 were men, with 
an average age of 61.7 years (SD = 12.4 years). The 
majority of participants acquired aphasia from a stroke. 

In these analyses, we used the diagnostic labels pro-
vided in AphasiaBank to classify aphasia type. We 
included 104 individuals with fluent aphasia, 105 with 
nonfluent aphasia, and 26 with no classification and/or an 
unknown classification (see Table 1 for demographic 
information and Table 2 for diagnosis related information 
of the PWA). 

Word-Level Models 

The data yielded 56,419 words, of which 2,037 
(3.6%) were paraphasic errors. This included 964 semantic 
paraphasias, 657 phonemic paraphasias, and 416 neologis-
tic paraphasias. Of the errors without replacements, 1,627 
replacements came from AphasiaBank, while the rest were 
manually imputed. This included a total of 410 errors 
determined through the manual imputation process, of 
which 248 were semantic errors and 162 were neologistic 
errors. Table 3 describes the features of the words 
included in the data set. 

We use a receiver operating characteristic (ROC) 
curve to test the effectiveness of our decision tree classi-
fiers and random forest models. Specifically, we measured 
effectiveness as an average of the area under the curve 
(AUC) of the ROC curve of the 500 models. An AUC of 
0.5 suggests a classifier no better than random chance, 
whereas an AUC of 1.0 suggests a perfect classifier (i.e., 
100% sensitivity and 100% specificity in determining 
whether a word is an error). For the target word level, 
our decision tree model achieved an AUC of 0.860. Our 
random forest model, with a maximum depth of 8, 
achieved the highest AUC of 0.896 at the word level (see 
Figure 2). We repeated the analysis with a random forest 
model of unlimited depth with little change in perfor-
mance (AUC of 0.894; see Table 4). 
Table 3. Features of words included in models (N = 56,419). 

Word-level feature Possible values for categorical variables or r
numerical values 

Part of speech Adjective, adverb, auxiliary verb, complemen
conjunction, determiner, infinitive, interjec
noun, onomatopoeia, preposition, pronou

Location 0–68

Imageability 195–657.58

Frequency 0–0.0537

Syllable count 0–8

Zav
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When using the random forest model with maxi-
mum depth of 8 on test data, we selected an error classi-
fication threshold that balances sensitivity with specific-
ity. This model achieved an average specificity of 0.802 
and sensitivity of 0.813. When assessed based on error 
type, we find that the sensitivity for semantic paraphasias 
was 0.821, the sensitivity for phonemic paraphasias was 
0.764, and the sensitivity for neologistic paraphasias was 
0.872. 

From our best model (i.e., the random forest model 
with a maximum depth of 8), we examined the most 
salient features from person-level (demographic or diag-
nostic features) and/or word level (e.g., imageability) fea-
tures that influence paraphasic errors. We used mean 
decrease Gini impurity to measure feature importance. 
This feature importance method attributes the decrease in 
the Gini impurity index caused by each node to that 
node’s feature, taking a weighted average based on how 
much training data were sorted using that path through 
the tree. The results for each feature are normalized to 
sum to 1 (Scornet, 2023). The most salient features, in 
order of importance, were word frequency, imageability, 
part of speech, age, severity, and syllable count, followed 
by aphasia duration, location of word, status of apraxia, 
type of aphasia (e.g., fluent), and status of dysarthria (see 
Figure 3). Of those, a separate multiple logistic regres-
sion on all data to determine directionality of the vari-
ables found that longer syllable count, greater imageabil-
ity, certain parts of speech (i.e., nouns, pronouns, adjec-
tives, determiners, verbs, prepositions, adverbs), and 
position later in the utterance  were  related to greater
likelihood of error, while higher frequency and other 
parts of speech (i.e., infinitives, onomatopoeias, interjec-
tions, complementizers, auxiliary verbs, and conjunc-
tions) were related to lower likelihood of error. As part 
of the same multiple logistic regression model, the 
person-level features that were related to increased likeli-
hood of error include more severe aphasias, greater age, 
nonfluent aphasias, and presence of apraxia and/or dys-
arthria, while longer duration of aphasia reduced the 
likelihood of error.
ange for Mode for categorical values/average for numerical 
values 

tizer, 
tion, 
n, verb 

Verb 

5.89 

337.99 

0.0086 

1.22 

aleta et al.: Machine Learning to Explain Errors in Narratives 457

2025, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



SIG 2 Neurogenic Communication Disorders

Figure 2. Receiver operating characteristic curve of the random 
forest model, maximum depth of 8 (word-level model). AUC = area 
under curve. 
Contextual Models 

Our contextual model determines paraphasias based 
on features of the speaker, the intended word, and the fea-
tures of the surrounding words. When given information 
about the target word and the psycholinguistic features of 
surrounding words (with varying window sizes; see Table 
4), AUC ranged from 0.881 to 0.899, which suggests these 
models are not inherently stronger models than those that 
include the target word features without word-level fea-
tures of surrounding words. Notably, the only context-
based model that outperformed the word-level model was 
the random forest model with unlimited depth that 
included information about the target word, as well as the 
word before and after that word. This model resulted in 
an AUC of 0.899 (compared to the target word only 
model with an AUC of 0.894). As a follow-up analysis, 
we developed models that could determine the presence of 
a paraphasia when given the surrounding words and their 
• •

Table 4. Area-under-curve values for random forest models with various w

Model 

Wind

0 . . .  0 -2

Random forest model with maximum depth of 8 0.896 0.

Random forest model with unlimited maximum depth 0.894 0.

Note. The target word is labeled as 0. The word before the target wo
inclusive. For example, a window of −3 to 1 would include the three word
ing the target word. 
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respective psycholinguistic features, but not given the fea-
tures of the target word itself. When given the single word 
before and after the target word, our decision tree model 
achieved an AUC of 0.687. This rose to an AUC of 0.744 
with a random forest model with a maximum depth of 8 
and an AUC of 0.737 with a random forest model of an 
unlimited depth. Models that expanded the window to 
two words before and after or three words before and 
after the target word performed similarly (with AUC of 
0.743 and 0.745, respectively). The model performance 
was poorer when given information only about words pre-
ceding the target word, with the best model being the ran-
dom forest model with a maximum depth of 8 that used 
the words in the −2 and −1 position relative to the target 
word (i.e., the two words preceding the target word). This 
model resulted in an AUC of 0.729. 
Discussion 

In this study, we explored how personal, clinical, 
and psycholinguistic features could be used to determine if 
a target word was likely to be produced in error by a per-
son with aphasia during a narrative language task. Our 
most accurate models (yielding an AUC of 0.897 and 
0.899) were those that learned from the target word itself 
or from the target word plus the features of the single 
words that surrounded it, respectively. Training on addi-
tional information from more distant words in the utter-
ance did not improve the model. Additionally, models with-
out the target word information but with the information 
about words leading up to the target word yielded a maxi-
mum AUC of 0.729. This is not as successful as the models 
with target word information but does suggest that, even in 
the absence of a known target word, contextual informa-
tion can help predict the production of paraphasias. This 
highlights the possibility of automated technologies that 
could utilize predictive language capabilities to support tar-
geted, augmented communication in instances of likely 
paraphasic production. 

Our decision to introduce word features was influ-
enced by recent findings in aphasiology that provide
•

indow sizes. 

ow of words around target word included in analysis 

 . . .  0 -1  . . .  1 -4  . . .  0 −3 . . .  1 -2  . . .  2 -3  . . .  3 

885 0.890 0.882 0.887 0.886 0.886 

888 0.899 0.881 0.892 0.893 0.890 

rd is −1, and the word after the target word is 1. All windows are 
s before the target word, the target word, and the first word follow-
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Figure 3. Feature importance for the random forest model with a 
maximum depth of 8. POS = part of speech. 
evidence for the connection between word-level features 
(e.g., imageability) and the likelihood of that word 
being an error. For example, our finding that part of 
speech, among other features, is related to error produc-
tion is similar to the findings of Malyutina and Zelenkov 
(2019). They found that the structure of verbs, specifi-
cally the number of arguments, affected error produc-
tion (e.g., intransitive verb included in the phrase “he 
jumps” requires less information than the transitive verb 
“he bakes,” which has a direct object). They also found 
the effects of this underlying feature were consistent 
across people with fluent and nonfluent aphasia but dif-
fered at the word versus sentence level. This newer 
research into sentence-level production supported our 
decision to expand error detection from the word level 
to the utterance level, as the interaction of word fea-
tures may affect the likelihood of a word being an error. 
Like Malyutina and Zelenkov (2019), we found a 
change in feature importance when expanding from tar-
get word models only to those with contextual informa-
tion from surrounding words, or when using models 
with only the contextual information. For example, in 
models relying only on contextual information and not 
the target word itself, the presence of a determiner 
before a target word leads to increased likelihood of 
error in the next word (see Supplemental Material S1). 
Our automatic detection of the most salient features 
driving errors in PWA can aid clinicians in selecting 
effective therapeutic words for improved communica-
tion outcomes. For example, word frequency, image-
ability, and part of speech are the word features that 
were most salient in predicting whether a word will 
likely be a paraphasic error. Thus, these features could 
be systematically manipulated to target words that are 
most at risk for errored production and most likely to 
Zav
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have a functional impact on the production of those 
with aphasia. Following this line of thought, newer 
studies in aphasia treatment are exploring the interac-
tion between word-level features and treatment targets 
(Bailey et al., 2020). Researchers sought out to see the 
effects of targeting verbs with low concreteness (low image-
ability), or how easily word can be pictured, and found 
increased retrieval with targeted verbs that extended to 
untreated verbs. In this way, they demonstrate how strate-
gically targeting the features that can increase the likeli-
hood of errors can create more effective treatment 
approaches, thus aiding functional communication. 

Applications 

The findings of this study could be applied in several 
unique ways. Our model determined underlying features 
that are driving the word-level errors common in aphasia. 
Furthermore, it showed how machine learning can be a 
tool to sift through the complexities found within natural, 
disordered speech on a larger scale than is manually feasi-
ble during a traditional evaluation or therapy session. The 
56,419 words used for this study were within sentences 
that were often incomplete, unintelligible, or agrammatic. 
This challenged us to apply statistical tools of natural lan-
guage processing as preselected features were presented to 
successfully analyze patterns in disordered speech. Eventu-
ally, creating more efficient, real-time models could serve 
as a diagnostic tool for clinicians to systematically identify 
error patterns in the speech of PWA at a higher rate and 
with more nuanced word-level characteristics. 

Within existing and capable predictive output sys-
tems, such as high-tech augmentative and alternative com-
munication methods, our automatic analysis could eventu-
ally be refined and used to create reliable predictions of 
likely intended words. This predictive system could aid in 
reducing communication breakdowns between PWA and 
their communication partners. Over time, the use of 
machine learning models with accurate medical data, such 
as speech samples, could lead to a more accurate language 
recovery profile for a person with aphasia. 
Limitations 

The primary limitation of this study is driven by the 
adaptation of techniques based on natural language 
models to disordered speech. There is limited research in 
interdisciplinary studies of this nature, which challenged 
us to rationalize decisions at several stages of this study. 
For example, the use of decision tree classifiers meant that 
we needed the intended word and features for all utter-
ances included in the study, which proved difficult with 
often unintelligible or limited speech. Additionally, we
aleta et al.: Machine Learning to Explain Errors in Narratives 459
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used large databases (Coltheart, 1981) for features that could 
not be acquired from AphasiaBank alone and found that there 
was still a large quantity of words without corresponding fea-
tures. This was a fundamental issue we had to resolve with the 
use of regression imputation techniques (i.e., using existing 
data to predict the likely value of the feature for a new word) 
to successfully advance the study. Overall, missingness values 
evoked several questions about the best approaches regarding 
imputation strategies for our purposes. 

Furthermore, another limitation of our current sys-
tem is its reliance on manual transcriptions. For example, 
our use of the AphasiaBank narratives was made possible 
by the trained interviewers who recorded and transcribed 
interviews, along with the added, standardized language 
tags. Additionally, our manual imputation strategy for 
missing target words required us to listen to each unintelli-
gible neologism and semantic paraphasia without replace-
ment to create clean utterances with the likely intended 
words. Clinically, real-time and continuous transcriptions 
are unrealistic due to time constraints. In research, it can 
also be time-consuming to create clean transcripts when 
working with large sets of data. As a result, our study is 
limited by its replicability in clinical settings. However, the 
findings of the study can inform clinical practice by focus-
ing on the role that salient features such as frequency and 
imageability play to help inform interventions, even if the 
specific transcribing is not feasible for a particular client. 

Directions for Future Studies 

Our current approach to analysis could be expanded 
in several ways. First, we could explore additional window 
sizes (i.e., adjusting the number of words before and after 
a target word) to determine if window sizes outside of 
what we tested within the current models can improve 
model performance. Additionally, we only explored ran-
dom forest models with either a maximum depth of eight 
decision nodes or unlimited decision nodes. We could 
explore additional model options to optimize performance. 
Finally, we could incorporate sentence-level characteristics 
(e.g., average word frequency) as a feature to provide 
additional contextual information. 

Future study could approach our broader problem 
in several different ways. We currently evaluate the likeli-
hood that a target word results in a paraphasia when 
given a single word and its preselected features as well as 
surrounding words and their preselected features. We have 
not explored the impact of providing a machine learning 
model with longer utterances or entire speech samples. 
Our current approach is building the groundwork for the 
expansion of future work in this regard. This would also 
involve creating imputation strategies for part of speech of 
word errors without replacements. 
• •460 Perspectives of the ASHA Special Interest Groups Vol. 10 451
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Additionally, future work could also consider moving 
beyond determination of errors and creating a system that can 
determine the likelihood that a particular error is a semantic, 
phonemic, or neologistic paraphasia. Previous studies have 
found that automatic classification is possible for phonemic 
versus neologistic paraphasias (Adams et al., 2017), but no 
study to date has attempted to automatically classify all types 
of paraphasias at the discourse level. The inclusion of addi-
tional available data in the AphasiaBank, such as audio and 
visual recordings, could lead to more nuanced approaches 
within language models and possible improved outcomes. 

The most exciting direction of future work is the cre-
ation of a machine learning system that can use clinical, 
psycholinguistic, and person-level features to predict the 
most likely word the speaker intended in place of a para-
phasia. While our current system relies on manual entries, 
or a “best guess” approach, a more instantaneous system 
could potentially aid in communication and/or create more 
functional screeners for PWA. Lastly, our findings are 
bound to a highly contextualized narrative task, the Cinder-
ella story. Future work should follow the work of Salem 
et al. (2023) by applying machine learning principles to 
novel, decontextualized utterances to increase the generali-
zation and overall clinical applicability of findings. 

In conclusion, the information garnered by this study 
revealed ways that machine learning can determine, with 
high accuracy, the likelihood of a word produced by PWA 
being an error. Through use of decision trees, random forest 
models, and hybrid imputation strategies, our study deepens 
understanding of the driving features of error productions in 
PWA and point to potential clinical applications that can 
lead to more effective interventions, and resulting communi-
cation, for PWA. The study also highlights how machine 
learning techniques can support the development of further 
models for speech and communication applications. 
Author Contributions 

Rosa Zavaleta: Conceptualization, Investigation; 
Writing – original draft, Writing – review & editing, Visuali-
zation. Jacob Brue: Conceptualization, Methodology, Soft-
ware, Formal Analysis, Writing – review & editing, Visuali-
zation. Sandip Sen: Conceptualization, Methodology, 
Formal Analysis, Resources, Writing – review & editing, 
Supervision. Laura Wilson: Conceptualization, Methodology, 
Resources, Writing – review & editing, Supervision. 
Data Availability Statement 

The data sets analyzed during the current study are 
not publicly available, as access is restricted to members of
•–462 April 2025

2025, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



SIG 2 Neurogenic Communication Disorders
the AphasiaBank consortium group. Those interested in 
joining the consortium should follow guidelines described 
at https://aphasia.talkbank.org/. The scripts used for data 
analyses are available as Supplemental Material S2. 
Acknowledgments 

Authors Rosa Zavaleta, Jacob Brue, and Laura Wilson 
received internal funding from The University of Tulsa to 
travel and present this study at the 2023 ASHA Convention. 
No other funding was obtained. The AphasiaBank is sup-
ported by grant funding from National Institute on Deafness 
and Other Communication Disorders Grant R01-DC008524 
(2022–2027). 
References 

Adams, J., Bedrick, S., Fergadiotis, G., Gorman, K., & van 
Santen, J. (2017). Target word prediction and paraphasia clas-
sification in spoken discourse. In K. B. Cohen, D. Demner-
Fushman, S. Ananiadou, & J. Tsujii (Eds.), Proceedings of the 
BioNLP 2017 Workshop (pp. 1–8). Association for Computa-
tional Linguistics. https://doi.org/10.18653/v1/W17-2301 

Arslan, S., Devers, C., & Ferreiro, S. M. (2021). Pronoun process-
ing in post-stroke aphasia: A meta-analytic review of individ-
ual data. Journal of Neurolinguistics, 59, Article 101005. 
https://doi.org/10.1016/j.jneuroling.2021.101005 

Bailey, D. J., Nessler, C., Berggren, K. N., & Wambaugh, J. L. 
(2020). An aphasia treatment for verbs with low concreteness: 
A pilot study. American Journal of Speech-Language Pathology, 
29(1), 299–318. https://doi.org/10.1044/2019_AJSLP-18-0257 

Bird, H., Howard, D., & Franklin, S. (2003). Verbs and nouns: 
The importance of being imageable. Journal of Neurolinguistics, 
16(2–3), 113–149. https://doi.org/10.1016/S0911-6044(02)00016-7 

Bird, S., Klein, E., & Loper, E. (2009). Natural language process-
ing with Python: Analyzing text with the natural language 
toolkit. O’Reilly. 

Brady, M. C., Kelly, H., Godwin, J., & Enderby, P. (2012). 
Speech and language therapy for aphasia following stroke. 
Cochrane Database of Systematic Reviews. Article CD000425. 
https://doi.org/10.1002/14651858.CD000425.pub3 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5– 
32. https://doi.org/10.1023/A:1010933404324 

Butterworth, B., Howard, D., & McLoughlin, P. J. (1984). The 
semantic deficit in aphasia: The relationship between semantic 
errors in auditory comprehension and picture naming. Neu-
ropsychologia, 22(4), 409–426. https://doi.org/10.1016/0028-
3932(84)90036-9 

Charbuty, B., & Abdulazeez, A. (2021). Classification based on 
decision tree algorithm for machine learning. Journal of 
Applied Science and Technology Trends, 2(01), 20–28. https:// 
doi.org/10.38094/jastt20165 

Coltheart, M. (1981). The MRC psycholinguistic database. The 
Quarterly Journal of Experimental Psychology A: Human 
Experimental Psychology, 33(4), 497–505. https://doi.org/10. 
1080/14640748108400805 

Dalton, S. G. H., Shultz, C., Henry, M. L., Hillis, A. E., & 
Richardson, J. D. (2018). Describing phonological paraphasias 
Zav

Downloaded from: https://pubs.asha.org Carnegie Mellon University on 04/01/
in three variants of primary progressive aphasia. American 
Journal of Speech-Language Pathology, 27(1S), 336–349. 
https://doi.org/10.1044/2017_AJSLP-16-0210 

Dillow, E. P. (2013). Narrative Discourse in aphasia: Main concept 
and core lexicon analyses of the Cinderella story [Master’s thesis,  
University of South Carolina]. University Libraries. https:// 
scholarcommons.sc.edu/etd/2623 

Ellis, C., & Urban, S. (2016). Age and aphasia: A review of pres-
ence, type, recovery and clinical outcomes. Topics in Stroke 
Rehabilitation, 23(6), 430–439. https://doi.org/10.1080/10749357. 
2016.1150412 

Fergadiotis, G., Kapantzoglou, M., Kintz, S., & Wright, H. H. 
(2019). Modeling confrontation naming and discourse informa-
tiveness using structural equation modeling. Aphasiology, 33(5), 
544–560. https://doi.org/10.1080/02687038.2018.1482404 

Fromm, D., Forbes, M., Holland, A., Dalton, S. G., Richardson, 
J., & MacWhinney, B. (2017). Discourse characteristics in 
aphasia beyond the Western Aphasia Battery cutoff. American 
Journal of Speech-Language Pathology, 26(3), 762–768. 
https://doi.org/10.1044/2016_AJSLP-16-0071 

Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imag-
ery, concreteness, familiarity, and ambiguity measures for 
1,944 words. Behavior Research Methods & Instrumentation, 
12(4), 395–427. https://doi.org/10.3758/BF03201693 

Goodglass, H., Hyde, M. R., & Blumstein, S. (1969). Frequency, 
picturability and availability of nouns in aphasia. Cortex, 
5(2), 104–119. https://doi.org/10.1016/S0010-9452(69)80022-5 

Grochmal-Bach, B., Pachalska, M., Markiewicz, K., Tomaszewski, 
W., Olszewski, H., & Pufal, A. (2009). Rehabilitation of a 
patient with aphasia due to severe traumatic brain injury. Med-
ical Science Monitor, 15(4), CS67–CS76. https://pubmed.ncbi. 
nlm.nih.gov/19333207/ 

Grossman, M., & Irwin, D. J. (2018). Primary progressive apha-
sia and stroke aphasia. Continuum, 24(3), 745–767. https://doi. 
org/10.1212/CON.0000000000000618 

Hallowell, B. (2017). Aphasia and other acquired neurogenic lan-
guage disorders: A guide for clinical excellence (2nd ed.). Plural. 

Ho, T. K. (1995, August). Random decision forests. In Proceed-
ings of 3rd International Conference on Document Analysis and 
Recognition (Vol. 1, pp. 278–282). IEEE. https://ieeexplore. 
ieee.org/document/598994 

Howard, D., Osborne, F., Best, W., Hickin, J., & Herbert, R. 
(2008). Do picture-naming tests provide a valid assessment of 
lexical retrieval in conversation in aphasia? Aphasiology, 
22(2), 184–203. https://doi.org/10.1080/02687030701262613 

Järvelin, A., & Juhola, M. (2011). Comparison of machine learn-
ing methods for classifying aphasic and non-aphasic speakers. 
Computer Methods and Programs in Biomedicine, 104(3), 349– 
357. https://doi.org/10.1016/j.cmpb.2011.02.015 

Jothi, K. R., & Mamatha, V. L. (2020). A systematic review of 
machine learning based automatic speech assessment system to 
evaluate speech impairment. In 3rd International Conference on 
Intelligent Sustainable Systems (ICISS), Thoothukudi, India (pp. 
175–185). https://doi.org/10.1109/ICISS49785.2020.9315920 

Le, D., Licata, K., & Mower Provost, E. (2018). Automatic quan-
titative analysis of spontaneous aphasic speech. Speech Commu-
nication, 100, 1–12. https://doi.org/10.1016/j.specom.2018.04.001 

Le, H., & Liu, M. (2023). Aphasia. National Library of Medi-
cine. https://www.ncbi.nlm.nih.gov/books/NBK559315/ 

Lewis, M. L., & Frank, M. C. (2016). The length of words 
reflects their conceptual complexity. Cognition, 153, 182–195. 
https://doi.org/10.1016/j.cognition.2016.04.003 

Ljubešić, N., Fišer, D., & Peti-Stantić, A.  (2018). Predicting con-
creteness and imageability of words within and across
aleta et al.: Machine Learning to Explain Errors in Narratives 461

2025, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 

https://aphasia.talkbank.org/
https://doi.org/10.18653/v1/W17-2301
https://doi.org/10.1016/j.jneuroling.2021.101005
https://doi.org/10.1044/2019_AJSLP-18-0257
https://doi.org/10.1016/S0911-6044(02)00016-7
https://doi.org/10.1002/14651858.CD000425.pub3
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/0028-3932(84)90036-9
https://doi.org/10.1016/0028-3932(84)90036-9
https://doi.org/10.38094/jastt20165
https://doi.org/10.38094/jastt20165
https://doi.org/10.1080/14640748108400805
https://doi.org/10.1080/14640748108400805
https://doi.org/10.1044/2017_AJSLP-16-0210
https://scholarcommons.sc.edu/etd/2623
https://scholarcommons.sc.edu/etd/2623
https://doi.org/10.1080/10749357.2016.1150412
https://doi.org/10.1080/10749357.2016.1150412
https://doi.org/10.1080/02687038.2018.1482404
https://doi.org/10.1044/2016_AJSLP-16-0071
https://doi.org/10.3758/BF03201693
https://doi.org/10.1016/S0010-9452(69)80022-5
https://pubmed.ncbi.nlm.nih.gov/19333207/
https://pubmed.ncbi.nlm.nih.gov/19333207/
https://doi.org/10.1212/CON.0000000000000618
https://doi.org/10.1212/CON.0000000000000618
https://ieeexplore.ieee.org/document/598994
https://ieeexplore.ieee.org/document/598994
https://doi.org/10.1080/02687030701262613
https://doi.org/10.1016/j.cmpb.2011.02.015
https://doi.org/10.1109/ICISS49785.2020.9315920
https://doi.org/10.1016/j.specom.2018.04.001
https://www.ncbi.nlm.nih.gov/books/NBK559315/
https://doi.org/10.1016/j.cognition.2016.04.003


SIG 2 Neurogenic Communication Disorders
languages via word embeddings. In I. Augenstein, K. Cao, H. 
He, F. Hill, S. Gella, J. Kiros, H. Mei, & D. Misra (Eds.), 
Proceedings of the Third Workshop on Representation Learn-
ing for NLP (pp. 217–222). Association for Computational 
Linguistics. https://doi.org/10.18653/v1/W18-3028 

MacWhinney, B. (2000). The CHILDES Project: Tools for ana-
lyzing talk (3rd ed.). Lawrence Erlbaum Associates. https:// 
doi.org/10.21415/3mhn-0z89 

MacWhinney, B., Fromm, D., Forbes, M., & Holland, A. (2011). 
AphasiaBank: Methods for studying discourse. Aphasiology, 
25(11), 1286–1307. https://doi.org/10.1080/02687038.2011.589893 

Malyutina, S., & Zelenkova, B. (2019). Verb argument structure 
effects in aphasia are different at single-word versus sentence 
level. Aphasiology, 34(4), 431–457. https://doi.org/10.1080/ 
02687038.2019.1697866 

Marini, A., Boewe, A., Caltagirone, C., & Carlomagno, S. (2005). 
Age-related differences in the production of textual descriptions. 
Journal of Psycholinguistic Research, 34(5), 439–463. https://doi. 
org/10.1007/S10936-005-6203-z 

Matsuhira, C., Kastner, M. A., Ide, I., Kawanishi, Y., Hirayama, 
T., Doman, K., Deguchi, D., & Murase, H. (2020). Imageability 
estimation using visual and language features. In Proceedings of 
the 2020 International Conference on Multimedia Retrieval (pp. 
306–310). https://doi.org/10.1145/3372278.3390731 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient esti-
mation of word representations in vector space. arXiv. https://doi. 
org/10.48550/arXiv.1301.3781 

National Institute on Deafness and Other Communication Disorders. 
(2017). Voice, speech and language. Retrieved February 20, 
• •462 Perspectives of the ASHA Special Interest Groups Vol. 10 451

Downloaded from: https://pubs.asha.org Carnegie Mellon University on 04/01/
2022, from https://www.nidcd.nih.gov/health/voice-speech-and-
language 

Nickels, L., & Howard, D. (1995). Aphasic naming: What mat-
ters? Neuropsychologia, 33(10), 1281–1303. https://doi.org/10. 
1016/0028-3932(95)00102-9 

Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, 
imagery, and meaningfulness values for 925 nouns. Journal of 
Experimental Psychology, 76(1, Pt. 2), 1–25. https://doi.org/10. 
1037/h0025327 

Park, J., & Kyubyong, K. (2019). g2pe. GitHub. https://github. 
com/Kyubyong/g2p 

Salem, A. C., Gale, R. C., Fleegle, M., Fergadiotis, G., & 
Bedrick, S. (2023). Automating intended target identification 
for paraphasias in discourse using a large language model. 
Journal of Speech, Language, and Hearing Research, 66(12), 
4949–4966. https://doi.org/10.1044/2023_JSLHR-23-00121 

Scornet, E. (2023). Trees, forests, and impurity-based variable 
importance in regression. Annales de l’Institut Henri Poincare 
(B) Probabilites et statistiques, 59(1), 21–52. https://doi.org/ 
10.1214/21-AIHP1240 

Speer, R. (2022). rspeer/wordfreq: v3.0 (Version 3.0.2). Zenodo. 
https://doi.org/doidu.org/10.5281/zenodo.7199437 

Schwartz, M., Dell, G., Martin, N., Gahl, S., & Sobel, P. (2006). 
A case-series test of the interactive two-step model of lexical 
access: Evidence from picture naming⋆. Journal of Memory 
and Language, 54(2), 228–264. https://doi.org/10.1016/j.jml. 
2005.10.001 

Toglia, M. P., & Battig, W. F. (1978). Handbook of semantic 
word norms. Lawrence Erlbaum.
•–462 April 2025

2025, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 

https://doi.org/10.18653/v1/W18-3028
https://doi.org/10.21415/3mhn-0z89
https://doi.org/10.21415/3mhn-0z89
https://doi.org/10.1080/02687038.2011.589893
https://doi.org/10.1080/02687038.2019.1697866
https://doi.org/10.1080/02687038.2019.1697866
https://doi.org/10.1007/S10936-005-6203-z
https://doi.org/10.1007/S10936-005-6203-z
https://doi.org/10.1145/3372278.3390731
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://www.nidcd.nih.gov/health/voice-speech-and-language
https://www.nidcd.nih.gov/health/voice-speech-and-language
https://doi.org/10.1016/0028-3932(95)00102-9
https://doi.org/10.1016/0028-3932(95)00102-9
https://doi.org/10.1037/h0025327
https://doi.org/10.1037/h0025327
https://github.com/Kyubyong/g2p
https://github.com/Kyubyong/g2p
https://doi.org/10.1044/2023_JSLHR-23-00121
https://doi.org/10.1214/21-AIHP1240
https://doi.org/10.1214/21-AIHP1240
https://doi.org/doidu.org/10.5281/zenodo.7199437
https://doi.org/10.1016/j.jml.2005.10.001
https://doi.org/10.1016/j.jml.2005.10.001

	Using Machine Learning to Explain Paraphasias in Narratives of People With�Aphasia
	ABSTRACT
	Characteristics and Classification
	Paraphasias
	Aphasia Research and Machine Learning

	Method
	Source of Data
	Transcripts
	Subjects

	Measures
	Independent Variables
	Dependent Variables

	Procedure
	Imputation Strategy
	Supervised Machine Learning �Classification Models
	Training


	Results
	Participant Data
	Word-Level Models
	Contextual Models

	Discussion
	Applications
	Limitations
	Directions for Future Studies

	Author Contributions
	Data Availability Statement
	Acknowledgments
	References



